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PREFACE

This text-book on Applied Mechanics is intended for use in the

undergraduate courses in Mechanics in engineering schools. A
knowledge of the principles of General Physics and the Calculus

is assumed. The work in its present form grew out of the author's

attempt to develop the basic principles of the subject in a way
which the average student could easily follow and to present such

illustrations as would show clearly the application of such prin-

ciples to the solution of engineering problems.

Two features may be pointed out in which a, departure from the

usual procedure has been made which it is hoped will be advan-

tageous to the student. One of these is the extended use which

has been made of the graphic method of solution. It has been the

author's experience that the graphic method is valuable not only

on account of the ease and rapidity with which it may be applied to

the solution of certain classes of problems, but also on account

of the aid it gives in understanding the algebraic method. The

principles underlying the two methods are developed coordinately

in order to show their relation. The graphic method is used

wherever its application tends to promote clearness.

The other special feature is the large number of illustrative

examples which have been solved in detail to show the relation

between the principle which has been developed and the problems

to which it applies.

More problems are included than can usually be assigned if the

book is to be completed in one semester. Those included in the

articles should always be solved; the general problems at the end of

each chapter may be used as the instructor prefers. The answers

to all problems are given, since it has been found that the average

student will work at a problem with more interest if he has the

answer with which to check his result. Those instructors who
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prefer no answers to be given may make suitable changes in the

data of the problems.

In conclusion the author wishes to thank his colleague, Profes-

sor Richard G. Dukes, for his careful reading of the manuscript

and for his helpful suggestions in regard to form and content.

A. P. POOEMAN.
PoRonB University,

March, 1917.
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APPLIED MECHANICS.

GENERAL INTRODUCTION.

1. Definitions. Mechanics in general is the science which

treats of the effects of forces upon bodies af rest or in motion.

The complete subject includes many discussions which are of

purely theoretical interest and others which are apphcable only

to extremely complex problems. All such discussions are con-

sidered to be beyond the scope of this work, which will include

only those principles of mechanics which are applicable to the

simpler problems of engineering.

Mechanics may be divided into Statics and Kinetics. Statics

treats of bodies at rest or with uniform motion. Kinetics treats

of bodies with variable motion. In this work the kinematic or

pure motion discussion will be included in Kinetics.

2. Fundamental Quantities. Space, time, force and mass are

the fundamental quantities used in mechanics. There are two

systems of units in common use, the centimeter-gram-second (c.g.s.)

system and the foot-pound-second (f.p.s.) system. The foot-

pound-second system is used almost entirely by engineers in

English-speaking countries, so will be the only one used in this

book.

The units of space commonly used in engineering are the foot

and the inch.

The unit of time commonly used is the second.

A force is an action of one body upon another which changes or

tends to change the state of motion of the body acted upon. In

our experience the most common force is the attraction of the

earth for all bodies upon it. The measure of this attraction is

called weight and is determined by means of the spring balance.

Weight varies with the latitude and with the height above sea

level. The unit of force commonly used is the pound.

The mass of a body is the quantity of matter in it, and is con-

stant, regardless of position. Mass may be determined by means
1



2 APPLIED MECHANICS '

[Intho.

of the lever arm balance, or since the acceleration of gravity g

varies the same as the weight W, it may be determined from

simultaneous values of W and g. The unit of mass commonly
used in engineering is one containing g units of weight, or in

symbols,

M =—

•

g

Unless stated otherwise, the value of g will be taken as 32.2 ft.

per second per second. It should be noted that the units of force

and mass in engineering are g times the units used in pure physics.

The reason for this will be explained later.

3. Methods of Analysis of Problems in Mechanics. A
problem in mechanics, as in any other mathematical subject,

consists of a statement of certain known quantities and relations

from which certain other unknown quantities or relations are to be

determined.

There are two methods of analysis of problems, graphic and

algebraic. In the graphic method quantities are represented by
corresponding lines or areas, the relations between them are repre-

sented by the relations of the parts of the figure and the solution

is wholly by determination of the resulting lines or areas. In the

algebraic method quantities are represented by symbols, the

relations between them are shown by signs indicating operations,

and solution is made by algebra and arithmetic. Both methods

will be used in the solution of problems in this book and the student

should soon be able to select the method which is the better suited

to any given problem.

4. Vectors. A vector quantity is a quantity which has direc-

tion as well as amount. Force, velocity, momentum and accelera-

tion are examples. Vector

quantities are represented by
lines called vectors, of definite

length and with definite po-

sition and direction. The
length of the vector repre-

sents to some scale the mag-
nitude of the quantity, its

position shows the line of

action and an arrowhead shows the direction.

The sum of two or more vectors is found by laying them down
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so as to follow each other in order; then the vector drawn from

the beginning to the end of the system laid down is the sum or

resultant vector. In Fig. 1 the sum of the vectors a, b, c and d is

vector R. The line of action of vector R is not determined in this

figure.

5. Free-body Diagram. The free-body method of analyzing

problems will be used in this work. In applying this method, the

whole body or some part of it is considered as isolated from the

surrounding parts. This "free body" is represented diagrammati-

cally, with the actions upon it of the parts removed indicated by
vectors, known or unknown. From the conditions and forces

known, the unknown relations and forces are determined.

For example, in Fig. 11(a), the 50-lb. block is to be considered as

the free body. The block is represented diagrammatically by
point A in Fig. 11(b). The attraction of the earth W, the normal

resistance of the plane N, the tangential resistance of the plane

F, and the pull P are represented by their corresponding vectors

and are shown acting upon A. The forces with which the free body

acts upon the parts supposed to be removed are not considered.

6. Newton's Three Laws of Motion. Sir Isaac Newton
formulated the following Laws of Motion, generalized from obser-

vation.

1. Unless acted upon by some force, a body remains at rest or

in uniform motion. This property is called inertia.

2. A body acted upon by a resultant force receives an accelera-

tion in the direction of the force which is proportional to the force

and inversely proportional to the mass of the body.

3. To every action there is an equal and opposite reaction.

7. Classification of Forces. A distributed force is one whose

place of application is an area. A concentrated force is one whose •

place of apphcation is so small that it may be considered to be a

point. In many cases a distributed force may be considered as

though it were a concentrated force acting at the center of the area

of contact or at the center of the force system.

Forces are sometimes classified as forces at a distance and forces

by contact. Magnetic, electrical and gravitational forces are

examples of the first. Gravitational force, or the weight of bodies,

is the chief one considered in mechanics. The pressure of steam

in a cylinder and of the wheels of a locomotive on the supporting

rails are examples of forces by contact.



APPLIED MECHANICS [Intro.

8. Transmissibility of Forces. By common experience it has

been found that the external effect of a force upon a rigid body

is the same, no matter at what point of the body along the line of

action the force is appHed.

9. Graphical Representation of Forces. Since forces are

vector quantities, they are represented graphically by vectors.

For comparatively simple problems only one diagram is used, in

which case each vector shows the line of action, direction and

magnitude of the force represented, as in Fig. 2. For more com-

G,>

£
F

ForceDiagmm
Space and Force Diagrams

Combined

Fia. 2

9
Space Diagram

Fig. 3

plicated problems two diagrams are used, the space diagram

showing the hnes of action of the forces, and the force diagram

showing the magnitude of the forces, as in Fig. 3. The direction

of the forces may be shown in either diagram but is usually shown
in both.

10. Bow's Notation. In the graphical work Bow's Notation

will be used in all except very simple -problems. In the space

diagram each space from the Une of action of one force to that of

the next one is lettered with a lower case letter. The line of

action be in Fig. 3 is the line between space b and space c. The
corresponding upper case letters are placed at the ends of the

corresponding vector in the force diagram. Thus BC represents

in amount the force acting along line be in the space diagram.



PART I. STATICS.

CHAPTER I.

CONCURRENT FORCES.

11. Definition. A concurrent system of forces is one in which
the lines of action of all the forces meet in a common point. If all

of the forces in the system are in the same plane, it is called also a

coplanar system.

12. Resultant of Two Forces, Graphically. TheJParalMogrwm.

JjUw,. If two concurrent forces are represented by their vectors, both

of which are directed away from their point of intersection, the diagonal

of the completed parallelogram drawn through their point of inter-

section represents their resultant.

In Fig. 4, let vectors MN and

KL represent two forces whose

lines of action intersect at 0.

By the principle of Art. 8 the

forces may be transmitted along

their lines of action mitil they

are in the positions OA and OB.

Line AC is drawn parallel to OB
and line BC parallel to OA, to complete the parallelogram OACB.
The diagonal OC is the vector sum of the two vectors OA and OB
and represents the resultant of the two forces.

If the two vectors had been placed so that they were both

directed toward their point of intersection, their resultant vector

would have been the same.

The Triangle Law. If two concurrent forces are represented by

their vectors laid down in order as

the two sides of a triangle, the third

side of the triangle drawn from the

initial point to the final point

Fia. 5 represents their resultant. Fig. 5

shows the two possible solutions for obtaining the resultant of the

5

Fig.
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forces KL and MN of Fig. 4. In the lower triangle vectors OA
and AC represent the two forces, and vector OC represents their

resultant. In the upper triangle vectors OB and BC represent the

two forces and vector OC represents their resultant as before.

These diagrams are force diagrams only. The line of action of

the resultant must pass through the point of intersection of the

two lines of action in the space diagram.

If two forces have the same line of action, the resultant is the

algebraic sum of the two. If they are equal and opposite, their

sum is zero and the two forces are said to

be in equilibrium.

Conversely, if two forces are known to be

in equilibrium, they must be equal, opposite

and colinear.

/0/ts.

3/bs.

Fig. 6

Problem 1. Fig. 6 represents a body three feet

square to which forces are applied as shown.

Combine the 4r-lb.

in tm'n by means of the parallelogram law.

Ans. With 8-lb. force, R = 11.86 lbs.

With 6-lb. force, i? = 9.26 lbs.;

With 10-lb. force, B = 10.77 lbs.;

With 3-lb. force, iS = 1 lb.; e

force with each of the others

e (with X) = 77° 40'.

e = 62° 48'.

e = 158° 12*.

90°.

Problem 2. Combine the 3-lb. force of Jig. 6 with each of the others in

turn by means of the triangle law.

Ans. With 8-lb. force, R = 5.25 lbs.

With 6-lb. force, R = 4.42 lbs.

With 10-lb. force, R = 10.44 lbs.

e = 61° 02'.

e = 16° 20'.

e = 196° 40'.

With 4-lb. force, i? = 1 lb.; e = 90°.

13. Resultant of Two Forces, Algebraically.

nometry of Fig. 7,

From the trigo-

OR -=0P +0Q +2 0P X PQ cos a,

e = tan-^dg = tan-'_^Q^ "
and

OA OP + OQ cos a

In the special cases when a = 0°, 90° or 180°, these expressions

are much simplified.
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For a = 0°, OR = OP + OQ, and 6 = 0°.

For a = 90°, OR^^OP^' + OQ^ and 6 = tan-i£i-
OP

For a = 180°, OR = OP - OQ, and = 0° or 180°.

Problem 1. Find the resultant of the 6-Ib. force and the 4-lb. force of

Fig. 6 by the method of this article.

Problem 2. Find the resultant of the 6-lb. force and the 10-lb. force of

Fig. 6. Ans. R = 7.15 lbs.; e with 6-lb. force = 98° 36'.

Problem 3. Find the resultant of the 4-lb. force and the 10-lb. force of

Fig. 6. Ans. R = 10.77 lbs.; e = 158° 12'.

14. Resolution of a Force into Components. By reversing the

parallelogram law or the triangle law, any force may be resolved

into two components. Let the vector AB in Fig. 8 represent the

force. Through any point C draw the two lines AC and CB.

The vectors AC and CB represent the components of AB. C may
be any point, so any number of pairs of components may be

obtained. The components usually desired are those parallel to

certain given axes, such as ACi and CiJS, horizontal and vertical

respectively.

\y

^y
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Problem 2. Let F = 40 lbs. and a = 45° Determine Fx and Fy.

Ans. Fx = 28.28 lbs.

Problem 3. Let F = 120 lbs. and a = 110°. Determine Fx and Fy.

Am. Fx = - 41.04 lbs. Fy = 112.8 lbs.

Problem 4. Let F = 600 lbs. and a = 30°- Resolve F into two com-

ponents, one horizontal, the other at an angle of 120° with the positive end of

the X axis. Ans. 577.3 lbs. horizontal. 288.7 lbs. at 120°.

15.

cally.

FiQ. 10

Resultant of Three or More Forces in a Plane, Graphi-

By an extension of the Triangle Law of Art. 12, -the
,

resultant of any number of con-

current forces may be foimd.

In Fig. 10, AB and BC are com-

bined into their resultant AC;
AC and CD are combined into

their resultant AD; and finally

AD and DE are combined into

their resultant AE, which is

therefore the resultant of the

entire system. Its line of ac-

tion passes through 0, the common point of the system.

It will be noticed that in making the solution, vectors AB, BC,

CD and DE may be laid down in order, then the final resultant AE
may be drawn without using the intermediate resultants AC and

AD. Fig. 10(b) is called the Force Polygon. If the forces are

taken in any other order, a different force polygon will be obtained,

but the same resultant.

If the last force closes at the starting point, the resultant R — Q

and the system is in equilibrium. In any case, another force equal

and opposite to R through the common point of the system will

hold it in equilibrium.

Conversely, If the force system is in equilibrium, the force polygon

must close.

In the special case of three forces in equilibrium, the following

important principle also applies: // a force system of three non-

parallel forces is in equilibrium, they must meet in a common point.

For if any two of the forces are combined into their resultant, this

resultant acts through their point of intersection. Then in order

for the third force to balance this resultant and hence the other

two forces, it must also pass through their point of intersection

and be equal and opposite to their resultant.
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These principles are used in the solution of problems in which
the body and hence the force system acting upon it is known to be
in equihbrium, but some of the forces are unknown.

EXAMPLE 1.

A block weighing 50 lbs. is lying on a plane inclined at an angle of 30°

with the horizontal. If the friction of motion is 15 lbs., what force P par-

allel to the plane will be required to move the block uniformly up the plane?

Solution: —^ Fig. 11(a) shows the block resting upon the 30° plane with

the force P acting upon it. In the free-body diagram, Fig. 11(b), the actions

of all the surrounding parts ' upon the block as the free body are shown
diagrammatically. The weight is a force of 50 lbs. vertically downward.

The total reaction of the plane is resolVed into two components, one, F,

parallel to the plane (friction), the other, A'^, normal to the plane. The
friction is a force of 15 lbs. .downward along the plane. (Friction of the

adjoining surfaces always opposes the motion of the free body.) N, the

normal resistance of the plane, is unknown in amount and P is the unknown
force asked for. Both N and P, however, are known in direction.

Since the body is in uniform motion, the forces are in equilibrium, so

graphically the force polygon must close. This is drawn by laying down to

scale vector W of the 50-lb. force and vector F of the 15-lb. force of friction.

Fig. 11(c). Two other vectors, one parallel to N, Fig. 11(b), and one parallel

to P, must close at the initial point. These are drawn and their lengths

scaled. N = 43.3 lbs.; P = 40 lbs.

EXAMPLE 2.

A boom 30 ft. long, Fig. 12(a), weighs 1200 lbs. and is supported in a

horizontal position by a cable BC at an angle of 30° with the horizontal.

Determine the tension in the cable BC and the amount and direction of the

hinge reaction at A.

Solution:— It is known that the boom is in equihbrium under the action of

three forces, its weight vertically downward through the center of gravity D,

the tension in the cable BC, and the hinge reaction through A. The hne of

action of the weight intersects BC at E. By the principle of Art. 15 the Une

of action of the hinge reaction at A must also pass through E, so its direction

is determined, and is at an angle of 30° with the horizontal. The free-body
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diagram tor the boom is shown in Fig. 12(b) and the solution of the force

triangle in Fig. 12(c). The tension in the cable and the hinge reaction at

A scale 1200 lbs. each.

r
[B

'////////////////.

Fig. 12

It will be noticed that the force triangle formed of the vectors P, T and W
is similar to the triangle AEB on the truss, since their sides are mutually

parallel. As an alternative to drawing the force diagram accurately and

scaling the values, the two unknown forces may be calculated from the pro-

portionality of sides of the two similar triangles, since the dimensions of the

triangle AEB are known.

F _A'E
W AB

P = 1200 X ~^ = 1200.

Problem 1. In Fig. 11(a), let P act horizontally and let the friction F be

20 lbs. Solve for the force P necessary to move the block uniformly up the

plane. Ans. P = 52 lbs.

Problem 2. In Problem 1 solve for the horizontal force P necessary to

allow the block to move uniformly

down the plane.

Ans. F = 5.77 lbs.

Problem 3. A weight of 150 lbs.

suspended by a cord is pulled to one

side by a horizontal force of 40 lbs.

What is the tension in the supporting

cord and its angle with the vertical?

Ans. 165.2 lbs.; 8 = 14° 56'.

Problem 4. Determine the tension

in each cord and the value of the angle 9

in the system of cords shown in Fig. 13.

Ti = 136.7 lbs. Ta = 70.7 lbs. T3 = 36.6 lbs.

Ti = 100 lbs. Ti = 122.5 lbs. 6 = 15°.

16. Resultant of Three or More Forces in a Plane, Algebrai-

cally. As in the preceding article, the principles of Art. 13 may
be extended to the case of three or more forces. Any two may be

combined, then the resultant of these with a third and so on.

This method is cumbersome and will be found of little use.
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The principle of resolution and recomposition is more easily

applied. By the principles of Art. 14 each force may be resolved

at the common point of intersection into two forces along the two
rectangular axes. All the X components may next be combined
into one force called HF^ and all the Y components into one force

called TiFy. These two forces may then be combined into the

final resultant of the system R.

R = ViSF^y + {EFy)^

A concurrent system of forces in a plane is in equihbrium if

R = 0, which can be only if S /*':, = and 11Fy =0.
Conversely: // a system of concurrent forces is in equilibrium,

2/^x = and 2F„ = 0.

This principle is used in the solution of problems in which a

force system is known to be in equilibrium, but some of the forces

are unknown.
EXAMPLE 1.

Determine the amount and direction of the resultant of the four forces

represented in Fig. 14.

Solution: — Each force in order is replaced by its X and Y components,

Fx = F cos a and Fy = F sin a, as tabulated below.

F abs.)
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R = V3O.I22 + 5.622 = V938.8 = 30.64 lbs., as shown in Fig. 16. The
angle 6 with the X axis is given by the expression

B = tan tan
5.62

30.12
= 10° 35',

EXAMPLE 2.

A cast iron sphere 1 ft. in diameter rests in an 8 in. X 8 in. angle, one leg

of which is at an angle of 30° with the horizontal, as shown in Fig. 16(a).

What are the pressures at A and Bl

Solution:— The volume of a sphere = !«•» =
I
X :ir X ^ = 0.5236 cu. ft.

V^=Zi5.6lbs

Weight = 0.5236 X 450 = 235.6

lbs. Fig. 16(b) is the free-body

diagram for the sphere. The
weight is a force of 235.6 lbs.

vertically downward, represented

by vector W. Since there is no
tendency for the sphere to move
at the points of contact, the pres-

sure of each side of the angle

upon the sphere is normal to the

surface at that point. These pressures are represented by vectors P^ and
Pb.

If the summation of horizontal forces in the free body diagram is equated

to zero and the summation of vertical forces is equated to zero, each equation

will contain two unknown quantities and the two must be solved simultane-

ously in order to determine the unknown quantities.

If the summation of forces parallel to Pa is equated to zero, the equation

will contain only one unknown quantity which is immediately determined.

Pa -TT sin 30° =0.

Pa = 117.8 lbs.

Similarly, if the summation of forces parallel to Pb is equated to zero, Pb
is determined.

Pb-W cos 30° = 0.

Pb = 204 lbs.

Problem 1. Check the results obtained for Example 1 above, using the

line of action of the 100-lb. force as the X axis.

Problem 2. The system of forces shown in Fig. 17 is known to be in equi-

Ubrium. Determine the amounts of the unknown forces Ti and Tt.

Ans. Ti = 3010 lbs. Tj = 985 lbs.

/.400/is.

,3,600/bs.

Fia. 17 Fig. 18
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Problem 3. A wheel 2 ft. in diameter carries a load of 1000 lbs. as shown
in Fig. 18. What horizontal force P applied at the axle is necessary to start

it over an obstacle 6 inches high? What force is necessary if the wheel is 4 ft.

in diameter?

Am. P = 1732 lbs. P = 882 lbs.

Problem 4. A boom P, Fig. 19, is held by a
pin A at the wall CA, and a cable T fastened at

the outer end and running up to the wall at an
angle of 30° with the boom. A load of 1000 lbs.

is carried at point B. Determine the compres-

sion in P and the tension in T. IfiOOIbs.

Ans. P = 1732 lbs. T = 2000 lbs. Fig. 19

Problem 5. Solve Example 2, Art. 15, by the method of this article.

17. Resultant of Three or More Forces in Space, Graphically.

Any number of concurrent forces in space may be combined

graphically by a slight extension of the Triangle Law, Art. 12.

Any two of the forces may be combined into their resultant, then

this resultant may be combined with the third force, which in

general will not be in the same plane with the first two, and so on

until the final resultant is obtained. When the system consists

of three forces mutually at right angles, the resultant is the diag-

onal of the rectangular parallelopiped constructed upon the three

vectors. If the force polygon (in space) closes, the resultant is

zero and the forces are in equilibrium.

Conversely: If any system of concurrent forces in space is in

equilibrium, the force polygon closes.

Also, If the force polygon in space closes, the projection of the

force polygon on each of the three reference planes closes.

In the solution of problems in equilibrium, the projection of the

given system upon some reference plane is drawn and from the

fact that the projection of the force polygon must close, the un-

known forces are determined.

EXAMPLE.

A shear-legs crane has dimensions and load as shown in Fig. 20(a). Deter-

mine the stress in AE and the stress in AB.

Solution: — Take as the plane of projection the vertical plane AEF. The

force system projected upon this plane is shown in Fig. 20(b), which may also

be called the free-body diagram of point A. In this projection the forces

BA and DA are superimposed. In Fig. 20(c) the graphical solution of this

projected system is made. The vector T gives the stress in AE and scales
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15,120 lbs. The vector P' gives the sum of the projected values of the stresses

in BA and DA, 31,500 lbs.

Fig. 20

In order to determine the stresses in BA and DA, a view in the plane

ABD is taken, Fig. 21(a). Vector P' acts along CA and is really the resultant

of the stresses in BA and DA. In order to determine these

stresses, vector P' is laid down parallel to CA, as in Fig.

21(b). Through its initial point a Mnie is drawn parallel to

AB and through its final point a line is drawn parallel to

AD. Their intersection determines the length of the vectors

P, P, which represent the stresses in BA and DA. The
scaled value of each is 15,400 lbs.

Problem 1. A weight of 50 lbs. is hung from a hori-

zontal ring 4 ft. in diameter by means of three cords each

4 ft. long. On the ring the cords are placed 120° apart.

Find the tension in each cord. Ans. 19.22 lbs.

Problem 2. Solve Problem 1 if two of the cords are 90° apart and the point

of attachment of the third bisects the remaining arc.

Ans. 16.9 lbs. 16.9 lbs. 23.9 lbs.

18. Resolution of a Force into Three Components. The most
common case of the resolution of a force into three components is

that in which the components are parallel respectively to the three

rectangular axes.

Fig. 21

Fig. 22 Fig. 23

If the angles between the force and the axes are given, a with X,
|3 with Y and 7 with Z, the algebraic method of resolution is more
easily applied than the graphic method.

Fx = F cos a, Fy = F cos fi and Fz = F cos 7
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are the rectangular components along the three axes, as shown in

Fig. 22.

If the rectangular coordinates of two points on the line of action

of the force are given instead of the angles a, ^ and y, their cosines

may be computed from the dimensions given and the resolution

made algebraically. The graphic method, however, is very readily

employed in this case.

Let the force be F, acting diagonally from A to C, Fig. 23.

Pass a vertical plane ABCD through the force. Fig. 24(a) shows

the view normal to this plane, in which vector F is resolved into

vector F' horizontal and Fy vertical. Fy is one of the components

desired. In the horizontal plane AEGH, the top view of which is

shown in Fig. 24(b), the force F' is resolved into its two components

parallel to the other axes, F^ and Fz.

Problem 1. In Fig. 23, let GE = & ft., GB =Z ft., GH = i ft., GO = 4 ft.,

and F = 20 lbs. Resolve force F into its three rectangular components, Fx,

FyaxidFz. Ans. -9.38 lbs. -12.5 lbs. -12.5 lbs.

Problem 2. If a force of 100 lbs. has line of action OA, Fig. 23, determine

its three rectangular components, Fx, Fy and Fz.

Ans. 72.8 lbs. 48.5 lbs. 48.5 lbs.

Problem 3. In Fig. 22, F = 1000 lbs., a = 45°, = 64° 50' and y = 55° 30'.

Determine its three rectangular components, Fx, Fy and Fz.

Ans. 707 lbs. 425.3 lbs. 566.4 lbs.

19. Resultant of Three or More Forces in Space, Algebrai-

cally. If Fi, Fi, etc., Fig. 25, are the forces, at angles (ai, ft, 71)

(012, ^2, 72), etc., with the X, Y and Z axes respectively, the

resultant may be determined as follows:

At the common point of intersection each force may be resolved

into its X, Y and Z components. The X components may
be added algebraically into T,Fx, the Y components into HFy
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and the Z components into ^F^. The final resultant of these

three is,

R = V{^F,y + (LFyy + (iiF.y.

Fig. 25

The angles that R makes with the three axes are given by the

following expressions:

a = cos-i -j5-
; |3 = cos~i—^ ; 7 = cos ' -^^^

ti K ti

UR = 0, 'E.F:, = 0, "LFy = and 'LF^ = 0, and the force system

is in equilibrium.

Conversely, If a system of concurrent forces is in equilibrium, the

summation of forces along any line equals zero.

Also, The projection of any system of cpncurrent forces in equilib-

rium upon any plane constitutes a system in equilibrium.

EXAMPLE.

Fig. 26 represents a hay stacking outfit. With a load of 1000 lbs. at the

middle and a sag of 4 ft. below the horizontal, what are the stresses Ti, Ti

and Pt
y

Fig. 26

Solution:— Consider first the cable ACB and the load as the free body.

The stresses T^ and the weight of the load constitute a coplanar system of
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forces in equilibrium. With a sag of 4 ft. at C, the length AC = 25.32 ft.

Equation XFy = gives

2 r.
2I2

- 1000.

Ti = 3165 lbs.

Length AO = 30 sin 60° = 25.98 ft.

Length OD = V'502 - 25.98" = 42.7 ft.

The four forces at A constitute a concurrent system in equilibrium. Equa-
tion SFi = gives ,

Ti = 3660 Ibsi.

Equation SFy = gives

3660 X -~ + 3165 X ^^ - 2 P X 0.866 = 0.

P = 1388 lbs.

Problem 1. A tripod with legs 8 ft. long is set up on a level floor with each

leg at the vertex of an equilateral triangle whose sides are each 4 ft. long.

What are the stresses in the legs caused by a load of 100 lbs. on top?

Ans. 34.8 lbs. each.

Problem 2. Solve the Example in Art. 17 by the method of this article.

20. Moment of a Force with Respect to a Point. The moment
of a force with respect to a point is the product of the force and the

perpendicular distance from its line of action to the point. This

perpendicular distance is called the arm of the force; the point is

called the center of moments.

Let F, Fig. 27, be the force, d its arm and Mo the moment of the

force with respect to point 0. Then

Mo = Fd.

The moment of a force is the measure of its

tendency to rotate the body upon which it acts F

around an axis through the center of moments,

normal to the plane through the force and its arm. -^'^- ^
Unit of Moment. Moment is measured in terms of the units of

length and force used; as, foot-lbs., inch-lbs., inch-tons, etc.

Sign of Moment. Moments tending to produce rotation counter-

clockwise are commonly called positive, those clockwise, negative.

The opposite notation may be used if kept consistently throughout

the problem.

21. Principle of Moments. The algebraic sum of the moments

of two concurrent forces with respect to a point in their plane is equal

to the mxyment of their resultant with respect to the same point.
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Let P and Q, Fig. 28, be the forces concurrent at A, R their

resultant and any point in their plane. Draw AO and produce

^D it to F. From the ends of P and

R drop perpendiculars CE, DF
and CG. Also drop perpendiculars

p, q and r from to the forces P,

Q and R respectively. Let a,

and d be the angles between the

line AO and the forces P, Q and

£••

Fig. 28

i? respectively. Then

so

FD = FG + GD,

R&\n6 = P sin a + Q sin
/

This equation multiplied by OA becomes

R -OA sine = P OA sin a + Q -OA sin 0,

or

Rr = Pp + Qq.

The student should supply the proof when is between P and

R or between Q and R.

From the principle above, the moment of a force with respect to

a point is equal to the sum of the moments of its X and Y com-

ponents with respect to the same point. It is often simpler to

compute this sum than the moment of the force itself.

This proof may be extended to the case of three or more con-

current forces. The statement of the general case, then, is as

follows: The moment of the resultant of any number of concurrent

forces in a plane with respect to any point in thai plane is equal to the

algebraic sum of the moments of the forces with respect to the same

point.

The above demonstration is commonly called "Varignon's

Theorem."

Problem 1. In Fig. 28, let P = 100 lbs.; Q = 60 lbs.; angle between P
and Q = 60°; angle BAO = 80°; OA = i ft. Determine the resultant R
and the moment of this resultant with respect to point 0.

Ans. R = 140 lbs. Mo = 373.2 ft.-lbs.

22. Moment of a Force with Respect to a Line. The moment
of a force with respect to a line parallel to it is zero, since there is no

tendency for the force to rotate the body upon which it acts about

that line as an axis. The moment of a force with respect to an



Art. 221 GENERAL PROBLEMS 19

axis intersecting it is zero, since the moment arm is zero. The

moment of a force with respect to an axis in a plane perpendicular

to the force is equal to the product of the force and the perpendicu-

lar distance from the force to the axis.

If the axis is not in a plane perpendicular to the force, the force

may be resolved at any point into two rectangular components,

one parallel to the axis, the other perpendicular to a plane con-

taining the axis. The moment of the original force with respect to

the axis is equal to the moment of the perpendicular component

alone, since the moment of the component parallel to the axis is

zero.

Another method is to resolve the force into three mutually

rectangular components, one of which is par-

allel to the axis and hence has no moment
with respect to it. The sum of the moments

of the other two components gives the mo-

ment of the original force.

Problem 1. In the force system shown in Fig. 29,

determine the resultant moments with respect to the

X, Y and Z axes. Each side of the parallelepiped is

3 ft. long.

Ans. Mx= - 2.1 ft.-lbs. My 141.4 ft.-lbs. Mz

Fig. 29

- 238.6 ft.-lbs.

GENERAL PROBLEMS.

Note:— In many cases in this and the following lists of general problems

the student has a choice of methods of solution, so care should be taken to

choose the method best adapted to the problem. If there is no figure to illus-

trate the problem, a sketch is a great help in the solution.

The free-body diagram should always be drawn.

Problem 1. A weight of 50 lbs is supported by two cords, one at an angle

of 30° with the horizontal, the other at an angle of 45° with the horizontal.

Imd the tension in the cords. Ans. 36.6 lbs. 44.8 lbs.

Problem 2. A slack wire performer weighing 150 lbs. stands in the middle

of a wire 30 ft. long and depresses it 6 ft. What is the tension in the wire due

to the man's weight? Ans. 187.5 lbs.
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Problem 3. A picture weighing 30 lbs. is hung by an endless wire passing

over a hook at A and through screw rings at four points as shown in Fig. 30.

What is the tension in the cord and the resultant

pull on each screw?

Am. Tension = 16.8 lbs. Top screws, 7.71 lbs. at

13° 20' with horizontal. Bottom, 23.75 lbs. at 45°

with horizontal.

Problem 4. Boatmen say that a mule can pull a

heavier tow boat with a long hitch than with a short

one, while teamsters claim that in their work the

opposite is the case. Explain.

Problem 5. A force of 500 lbs. acts at an angle

of 30° with the horizontal. Find its vertical and

horizontal components.

Solve also if the force acts at an angle of 15° with the horizontal.

Ans. 250 lbs. 433 lbs. 129.4 lbs. 483 lbs.

Problem 6. A horizontal force of 180 lbs. is pulling a body up a 20° plane.

Find the components parallel to the plane and perpendicular to the plane.

Aris. 169.2 lbs. 61.6 lbs.

Problem 7. A guy wire to a smokestack makes an angle of 40° with the

ground. When the tension in it is 10,000 lbs., what are its vertical and hori-

zontal components?

The other two wires are at 120° with the first, but are at 45° and 50° with

the ground. What is the tension in each and what vertical compression is

caused in the stack by the three?

Ans. 6428 lbs. 7660 lbs. 10,830 lbs. 12,910 lbs. 23,228 lbs.

Problem 8. The upward reaction of the pedestal of a bridge upon the end

pin is 8000 lbs., as shown in Fig. 31. Consider the actions of the end post and
lower cord to be axial and determine the stress in each.

Ans. 9240 lbs. comp. in post. 4620 lbs. tens, in lower chord.

8p00lbs.

Fig. 31

Problem 9. Six cylinders of equal size, each weighing 1000 lbs., are piled

up as shown in Fig. 32. Find the pressures at A, B and C
Ans. 577 lbs. 2000 lbs. 2000 lbs.

Problem 10. Three uniform spheres, each weighing 12 lbs., just fit into a
triangular box with vertical sides. A fourth sphere of the same size and weight

is placed on top of the three. What pressure does each exert on the box at the

three points of contact? Ans, 16 lbs. on bottom. 2.83 lbs. at each side.
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Prjblem 11. A wheel 3 ft. in diameter carries a load of 500 lbs. What is

the amount and direction of the least force P which will start it over an ob-

struction 6 inches high? Ans. 373 lbs. at 48° 10' with the horizontal.

(Note:— Solve graphically. The weight is represented by a vector, known
completely. The direction of the reaction of the obstruction is radial. The
force P called for is given by the least vector which will close the triangle.)

Problem 12. One end of a horizontal rod 6 ft. long is pinned to a vertical

wall and the other is supported by a cord passing up to the wall at a point 8 ft.

above the pin. A load of 400 lbs. is hung at the

outer end. What is the tension in the cord and

the compression in the rod?

Ans. Tension = 500 lbs. Compression = 300 lbs.

Problem 13. If the weight is hung at the mid-

dle of the rod of Problem 12, what is the tension

in the cord? What is the amount and direction of

the pin pressure at the wall?

Ans. Tension = 250 lbs. R = 250 lbs.

e with hor. = 53° 08'.

Problem 14. Pig. 33 shows a simple derrick.

What are the stresses in AB and AC?
Ans. AB = 2500 lbs. tens.

Problem 16. In the crane shown in Fig. 34, determine the coinpression in

BD and the amount and direction of the pin pressure at A.

Ans. 1300 lbs. 900 lbs. 43° 50' with horizontal.

ZOOO/bs.

Pig. 33

AC = 2500 lbs. comp.

Fig. 34 Fig. 35

Problem 16. The boom of the stiff-leg derrick shown in Fig. 35 has a range

of position in a vertical plane from the horizontal to within 20° of the vertical.

Determine the position of the boom for the maximum stress in BC. For this

position of the boom in the vertical plane, determine the value of angle a for

the maximum compression in BE. Same for the maximum tension. If the

load at is 2400 lbs., determine the maximum stresses in BC, AC, BE
and BA.

Ans. BC = 4000 lbs. AC = 3200 lbs. BE = 4525 lbs. BA = 6920 lbs.



22 APPLIED MECHANICS [Chap, i

Problem 17. In the Example of Art. 17 resolve each force as there ob-

tained into its X, Y and Z components.

Ans. For AE, Fx = -12,080 lbs. Fy = -9120 lbs. Fz = 0.

For AB, F^ = 5790 lbs. Fy = 13,970 lbs. Fz.= 3080 lbs.

Problem 18. A shear legs crane is loaded as shown in Fig. 36. Find the

C stresses in AC and DC.

Ans. DC = 853 lbs. tens. AC = 825 lbs. comp.

Problem 19. The pressm'e of the steam on the

piston of an engine is 15,000 lbs. Neglecting friction,

what is the pressure on the guide and the compres-

sion in the connecting rod when the connecting rod

makes an angle of 15° with the direction of the pis-

ton rod? Ans. 4020 lbs. 15,520 lbs.

Problem 20. What weight can be drawn up a

smooth plane with a slope of 1 in 10, by a force of 50 lbs. acting parallel to the

plane? How much by 50 lbs. acting horizontally?

Ans. 502.5 lbs. 500 lbs.

Problem 21. A tripod ABCD, Fig. 37, with vertex at A has leg AC 27.b ft.

long, leg AB 25 ft. long and leg AD 30 ft. long. It is placed on level ground

with distance BC 20 ft., distance CD 30 ft. and distance BD 25 ft. With 6000

lbs. vertical load at A, what is the compressive stress in each leg? (Solve

graphicaUy.) Ans. AB = 2900 lbs. AC = 2100 lbs. AD = 1950 lbs.

6,000/i>5.

Fig. 37 Fig. 38

Problem 22. Determine the resultant of the five forces shown in Fig. 38,

both in amount and direction.

Ans. B = 74.1 lbs. a = 117° 52'. /3 = 135° 30'. y = 121° 30'.

Problem 23. In the force system shown in Fig. 38, determine the moment
of each force with respect to each axis. Each side of the cube is 5 ft. long.

Ans. F



CHAPTER II.

PARALLEL FORCES.

23. Resultant of Two Parallel Forces, Graphically. The
graphic method of finding the resultant of forces, as used in Art. 12,

must be modified in the case of parallel forces, since they do not

intersect. By one method,, one of the forces is resolved into two
components, then the resulting system of three forces is combined

into their resultant.

There are two cases, one in which the two forces are in the same
direction, as in Fig. 39, the other in which they are in opposite

(a) Space Diagram (h) Force Diagram

Fig. 39

directions, as in Fig. 40. The solution is simpUfied by using both

the space and force diagrams. In either figure let AB and BC

(a) Space Diagram

Fig. 40

(h) ForceDiagram

represent the forces, acting along ab and be. At any point n,

resolve AB into any two convenient components, AO and OB,

acting along ao and ob. Where ob intersects be, at m, combine
23
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OB and BC into their resultant OC acting along oc. The system

now consists of forces AO and OC, concurrent at p in the space

diagram. Combine these into their resultant AC which acts

through the point of intersection p parallel to the original forces.

The amount and the direction of the resultant are given by the

algebraic sum of the original forces.

The original polygon in the force diagram is called the force

polygon, point is called the pole and the auxiliary lines OA, OB,
etc., are called rays. The polygon in the space diagram is called

the funicular polygon, and the component parts of it, oa, oh, etc.,

are called strings.

It will be noticed that in the case in which two parallel forces

are oppositely directed, the resultant is not between the two, but

is outside on the side of the larger force.

If the two forces are opposite in direction and equal in amount,

the resultant is zero and point C, Fig. 40, falls at A in the force

diagram. Then line oc will be parallel to oa, hence the forces OC
and OA cannot be combined into a single force. Such a system is

called a couple and will be discussed in Arts. 27-30.

Problem 1. In Fig. 39, find the amount and position of the resultant if

force AB is 8000 lbs., force BC is 2000 lbs. and the distance between their hnes

of action is 5 ft.

Ans . R = 10,000 lbs., 1 ft. from a6.

Problem 2. Determine the amount and
position of the resultant of the two wheel

loads shown in Fig. 41.

Ans. R = 2600 lbs., 3.85 ft. from larger

wheel.

Problem 3. In Fig. 40, find the amount
and position of the resultant if force AB is 500 lbs., force BC is 300 lbs. and
the distance between their lines of action is 3 inches.

Ans. R = 200 lbs. downward, 4.5 in. to the left of ab.

Problem 4. The horizontal pressures of the support

upon the wheels of an elevator car are as shown in Fig.

42. Find the amount, direction and position of the

resultant.

Ans. R = 150 lbs. to the right, 2.67 ft. below 250-lb.

force.

24. Resultant of Two Parallel Forces, Al-
^^'"''^'

gebraically. As stated in Art. 23, the result-

ant of two parallel forces is given in amount and direction by
the algebraic sum of the component forces. It remains, then,

I.OOOIhs.
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to find the position of tiie line of action. Let AB and BC, Fig.

43, be the two forces and ab and be their lines of action. The
position of the line of action ac of their resultant will now be de-

termined with respect to ab.

Fig. 43

By the principle of Art. 21, the moment of the resultant AC
(acting along ac in the space diagram) with respect to point n is

equal to the moment of its two concurrent components, AO and

OC. But the moment of AO is zero, so

Moment oi AC = Moment of OC.

Also, the moment of OC with respect to n is equal to the moment
of its two concurrent components, OB and BC. Since the moment
of OB is zero.

Moment of OC = Moment of BC,

and Moment of AC = Moment of BC.

ACXr = BCX s.

Consider any point D, distant u from the line of action ab.

Since AC = AB + BC,

AC X u = AB X u + BC X u.

Add this equation to the one derived above. Then

ACiu + r) = AB Xu + BC{u + s).

The Principle of Moments for parallel forces may now be stated

:

The algebraic sum of the moments of two parallel forces with respect

to any point in their plane is equal to the moment of their resultant

with respect to the same point.

If the point D is taken on the line ac, the equation just derived

becomes
ABXr- BCXt = Q,

t^AB
r BC'
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or, the perpendicular distances of the resultant from the forces are to

each other inversely as the forces.

Since by geometry three parallel lines divide any two inter-

secting straight lines in the same ratio, this principle holds true

for any diagonal distances, also.

The graphical apphcation of this principle is often very advan-

tageous, so will be given here. If ab and be, Fig. 44, are the two

forces, join their lines of action by any

convenient straight hne mn. From m lay

off ml on ab equal by scale to force be, and

from n lay off np in the opposite direction

on be equal by scale to force ab. Join pi,

cutting mn at o. The resultant passes

through o.FiQ. 44

Problem 1. Show that
t AB

BC ies as well when AB and BC are in

opposite directions.

Problem 2. Check the position of the resultant as found in Problems of

Art. 23.

25. Resultant of Any Number of Parallel Forces, Graphically.

The graphical method of Art. 23 is readily extended to the case of

three or more parallel forces in a plane. In Fig. 45, AB is resolved

at any point m into

AO and OB. OB is

combined with BC into

their resultant OC. OC
is combined with CD
into OD. OD is com-

bined with DE into OE.

AO and OE are now
the only forces left, so

they are combined into

the final resultant of the

system, AE, acting through point p.

follows:

(1) Draw the space diagram.

(2) Draw the force polygon, noting the resultant.

(3) Choose any convenient pole and draw the rays.

(4) Parallel to the rays of the force diagram draw the corre-

sponding strings of the funicular polygon in the space diagram.

(aj Space Diagram (b) Force Diagram

The order of solution is as
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(5) The intersection of the first and last strings determines the

position of the resultant.

If Bow's notation is used, each string has its corresponding ray-

lettered similarly. For example, string ob is parallel to ray OB,

and is drawn between the two lines which enclose the "b" space,

ab and be. When the solution is begun, string oa is "free" until

intersected by the other free string to determine the line of action

of the resultant.

If the final point of the force polygon coincides with the initial

point so that the resultant R = but the two "free" strings do

not coincide, the resultant of the system is a couple, as will be

discussed in Arts. 27-30.

In case the forces are not in the same plane, the graphical method

is used by finding the resultant of any two forces in their plane,

then the resultant of this with a third force in their separate plane.

and so on.
[}

i<-/-->t<-/'->t<--/'->l<-/'-^

Fig. 46

9 lbs. and the other forces as

Problem 1. Fig. 46 represents a body 4 ft.

long with forces applied as shown. If Fi = 10

lbs., Fi = 12 lbs , Fs and ft = and Fc = 16 lbs.,

find the amount and position of the resultant.

Ans. 38 lbs., 2 ft. from the left end.

Problem 2. In Fig. 46, let F3 = 14 lbs., Ft

in Problem 1. Determine the resultant.

Ans. 15 lbs. downward, 1.4 ft. from the left end.

Problem 3. Forces acting downward on the four vertical edges of a 3-ft.

cube are in order, 10 lbs., 20 lbs., 25 lbs. and 15 lbs. Combine the four forces

graphically.

Ans. 22 = 70 lbs., 1.07 ft. from 20-25 face, 1.29 ft. from 15-25 face.

26. Resultant of Any Num-
ber of Parallel Forces, Alge-

braically. In amount and
direction the resultant R of

any number of parallel forces

is given by their algebraic sum.

The method of locating the

position of the resultant will

now be shown.

Let Fi, F2, Fi, etc.. Fig. 47,

be any number of parallel forces and XOZ a plane of reference

normal to them. Consider first the forces Fi and F^ whose lines

of action pierce the plane of reference at B and D. Their result-

PiG. 47
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ant, Fi + Fi, lies in their plane and, by Art. 24, pierces the reference

plane at some point C such that

{Fi + F2JAC = FiXAB+F2XAD.
If this equation is multiplied by sin BAO, it becomes

(Fi + F2)x = Fixi + F2X2.

If (Fi + F2) is combined with F3 in a similar manner, the result-

ing expression is

(Fi +F2+ F,)x = F,xi + F2X2 + -F3X3.

By continuing until all of the forces of the system are combined

into their resultant R, the final relation is obtained:

Rx = FiXi + FiOCi + F3X3 +, etc.,

FiXi + F2X2 + F3X3 +, etc.

^
= ^

In a similar manner the distance z of the resultant from axis OX
may be determined.

i^lgl+F222+J'3g3+,etC.'= ^

It will be noticed that the distance x of resultant R from the

axis OZ is the same as the distance x of any point in the resultant

from the plane ZOY. It follows, then, that the same moment
equation would be obtained for any axis in the ZOY plane parallel

to OZ. Since this is so, it is common to speak of the moment of a

force with respect to a plane parallel to it, meaning thereby the

moment of the force with respect to any axis in the given plane

normal to the force.

It will now be shown that the expression derived above for

locating the distance of the resultant from any axis in a plane

normal to the force system holds true as well for any inclined axis.

Let X'OZ be a plane at an angle d with the plane XOZ. Each
force, at its point of intersection with the plane X'OZ, may be

resolved into two rectangular components, F sin d in the plane

X'OZ, and F cos d normal to it. The components F sin 6 in the

plane X'OZ have no moment with respect to the axis OX', hence

the moment of the normal components is equal to the moment of

the original forces. From the preceding discussion the moment
equation for the normal components becomes

Rcosd- z = Ficosd' zi + FiCosB • Zi+, etc.
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If this equation is divided through by cos 6, it becomes identical

with that for axis OX or any axis in the plane XOF parallel to OX,

Rz = FiZi + FiZi +, etc.

It must be remembered that z is the mutual perpendicular be-

tween the force and the inclined axis OX'.

Since the axis OX may have any position in the plane normal to

the forces, the axis OX' may have any position whatsoever; there-

fore the algebraic sum of the moments of any number of parallel forces

with respect to any axis is equal to the moment of their resultant with

respect to the same axis.

If the resultant R oi a, system of parallel forces is equal to zero,

but the moment of the system with respect to any axis is not equal

to zero, the system is equivalent to a couple, as will be discussed in

Arts. 27-30.
S/W 10,000 16.000

Problem 1. Determine the position
, ,/ I, ,' J. ,'/l -i' ^i

of] the resultant of the three downward v y " v i

\
forces shown in Fig. 48.

Ans. 6.7 ft. from left end.

Problem 2. Determine the position i i^poo 19^000

of the resultant of the two upward Y\q. 48
forces shown in Fig. 48.

Problem 3. A rectangular table 3 ft. wide and 4 ft. long has weights so

placed that the downward pressures on the four legs in order around the table

are as follows: A = 20 lbs.; B = 26 lbs.; C = 30 lbs.; O = 24 lbs. A
and B are at one end. Solve for the amount and position of the resultant.

An&. B = 100 lbs., 2.16 ft. from end AB, 1.32 ft. from side BC.

27. Moment of a Couple. Two parallel forces, equal in

amount, opposite in direction and with different lines of action,

constitute a couple, as FF, Fig. 49. The

,
perpendicular distance between them, /, is

g
—

• called the arm of the couple. The product

of one force and the arm is called the
A
<- f-

Yf moment of the couple, or

^°- 49 Mom. = Ff.

The moment of a couple is the same with respect to any point in

its plane, as will be shown. Let and 0' be any two points in the

plane of the couple, Fig. 49.

2Mo = FXOl+FXOB = FXAB = Ff.

Also, SMo' = F X 6^ - F xWB = F XAB = Ff.
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Since the resultant R oi a, couple is zero, moment is the only

effect of a couple. It follows, then, from the two preceding prin-

ciples, that a couple may be transferred to any place in its

plane or rotated through any angle and its effect Andll remain the

same.

Since moment is the only effect of a couple, it follows also that

any couple may be replaced by another of the same moment in

the same plane. Thus the rotary effect of a couple composed of

two forces of 8 lbs. each, acting 3 ft. apart, is the same as that

of another in the same direction with forces of 4 lbs. each, acting

6 ft. apart.

No single force can balance a couple. Since the resultant R of

the couple is zero, the resultant of the couple and another force

could not be zero.

A couple may be transferred to any plane parallel to its original

plane without change of effect. Since the moment of a couple with

respect to any point in its plane is the same as its moment
with respect to an axis through 0, perpendicular to its plane, the

moment is independent of the location of the plane of the couple

along the axis. For example, if a steam pipe is being screwed into

a sleeve by means of two pipe wrenches (constituting a couple), the

effect is the same, no difference at what point along the pipe they

are applied.

28. Graphic Representation of a Couple. Since couples have
no properties but magnitude and direction, they may be repre-

sented graphically by vectors. The length of the vector repre-

sents to some scale the magnitude of the couple, and the direction

of the vector shows the direction of its plane and the direction of

its rotation. The vector is drawn perpendicular to the plane of

the couple. The convention commonly used with regard to the

arrow is that in which, if the couple is viewed from the head end
of the vector, the rotation of the couple appears

positive (counter-clockwise). Either of the

vectors, V, Vi, Fig. 50, 10 units long, vertical,

with the arrow pointing downward, represents

the moment ( — 10 ft.-lbs.) of either couple in

the horizontal planes as shown.

The position of the vector is immaterial, since

the moment of the couple is the same with
respect to any axis perpendicular to its plane.
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29. Composition of Couples. The moment of the resultant

of any number of coplanar couples or of couples in parallel planes,

is equal to the algebraic sum of the moments of the component
couples.

By means of the principles of Art. 28, couples may be com-
pounded by combining their vectors. Since the position of the

vector is immaterial, the vectors of the couples may all be taken

through any given point, then added graphically. The resultant

vector represents completely the resultant couple.

Couples may also be. combined directly. If the couples are in

the same plane (or in parallel planes), they may all be reduced to

couples having equal arms/,

with the forces parallel. If

these are superimposed, the

forces Fi, F2, F3, etc., com-

bine into their resultant F
in each case. Then FJ +
F,f + Fsf+, etc., =Ff.

In Fig. 51, couple F/fi

reduces to couple Fjf.

f^'

f, F,'

F, Ji

F, t F!
^

Fig. 51

Couples Fiji and F^'fi reduce to F2/ and Fsf. Each set of forces,

Fi, F2, F3, gives the resultant force F, so the resultant couple is Ff.

If two couples to be combined are in intersecting planes, they

may be reduced to couples whose forces are equal each to each.

If the couples are then transferred, each in its own plane, so that

one force of each hes in

f^^ the intersection of the two

planes in opposite direc-

tions, as in Fig. 52, these

,-^ two forces neutralize each

other and may be removed
^^^- ^2 from the system. This

leaves the couple with forces FF and arm / in the plane ABCD.
If (j) is the angle of the two planes, and /i, /2 the arms of the

original couples after being transposed, the arm / is given by

f =/i'+/2^- 2/1/2 cos <^.

Problem 1. In Pig. 52, transfer the couple whose arm is /i downward in

its plane until the upper force is at the intersection of the two planes and

CaJ

determine the resultant couple.
Ans. Forces 2 F with arm /
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Problem 2. Couples of 10 lbs. X 4 ft., 3 lbs. X 16 ft., and 20 lbs. X 5 ft.

are located in the same vertical plane, all rotating counter-clockwise. What
is their resultant couple? Ans. +188 ft.-lbs.

Problem 3. A couple of 10 lbs. X 6 ft. in a vertical plane and one of

4 lbs. X 20 ft. in a horizontal plane are to be combined. Both are negative,

viewed from the angle between the planes. Determine the amount of the

resultant couple and the slope of its plane.

Ans. -100 ft.-lbs. e = 36° 52' with the horizontal.

30. Resolution of a Force into a Force and a Couple. Any
force may be resolved into a force through a given point

and a couple. In Fig. 53, let F be the given force acting

at A, and let be the given point. At introduce

tvFO opposite forces, Fi and F2, each equal and paral-

lel to F. Since they neutraUze each other, they do

not affect the system. Then Fi and F constitute a

couple with moment Ff, and may be transferred to

any place in their plane, leaving force F2 equal to

the original force F, but acting at 0. joo

f;

±_

Fig. 53

f^
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applying the conditions of equilibrium. The number of unknown
forces, however, must not exceed the number of independent equa-

tions which can be written, two in this case.

EXAMPLE.
A beam 10 ft. long, supported at the ends, carries three loads spaced as

shown in Fig. 56. What are the reactions at the ,„„„ ..„„ _

.

supports, Ri and Ri, if the weight of the beam „'< t' Ll a'.Lm' ..

itself is neglected?
I

,,' ., ^ |

Solution: — The beam is at rest, so the force I —\
system acting upon it is in equilibrium. Apph- "/[<--- /o'- ^^^
cation of the equation SF = ij = 0, gives Fig, 56

Ry+Ri- 9000 = 0.

Equation 2M = 0, with any point on Ri as the center of moments, gives

10 Ri - 6000 X 2 - 1000 X 5 - 2000 X 9 = 0.

^2 = 3500 lbs.

By substitution of the value of Ri in the equation above

iJi = 5500 lbs.

As a check, an independent solution for J?i may be made by writing the

equation of moments with respect to any point on Ri.

When the loading on a beam is symmetrical, no equations need be written,

since each reaction is one-half of the total load.

Problem 1. Solve for the reactions Ri and Ri of the beam shown in Fig. 57.

Neglect the weight of the beam. Ans. Ri = 1917 lbs. Ri = 583 lbs.

/Qoca 15,000-

2,000 500 , ,,'1^/1^.
V Y 4

I
zood

J^/ < - iz'- ^'^Z ^1
|<

-/?'

Fia. 57 Fig. 58

Problem 2. Solve for the reactions Rx and Ri of the beam shown in Fig. 58.

{Note: —• The weight of the beam, 2000 lbs., is a uniformly distributed load

with its centroid at the middle of the beam.)

Am. Ri = 15,580 lbs. Ri = 11,420 lbs.

Problem 3. Solve for the reactions Ri and Ri of the beam shown in Fig. 59.

_„„„ Ans. Ri = 9833 lbs. Ri = 3167 lbs.

10'- ->U-5'-H ^°° 5""

K

±
15-

/f/i !^
Fig. 59 Fig. 60

Problem 4. Solve for the reactions ij, and Ri of the overhanging beam
shown in Fig. 60. Ans. iJi = 40 lbs. Ri = 1260 lbs.
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32. Coplanar Parallel Forces in Equilibrium, Graphic Solu-

tion. The graphic relation corresponding to the principle of

Art. 31 is as follows:

If a system of coplanar parallel forces is in equilibrium, the force

polygon closes and the funicular polygon doses.

By the application of these two conditions of equihbrium, two

unknown forces may be determined.

EXAMPLE.

Determine the reactions Ri and R2 of the beam shown in Fig. 61.

Solution:— The space diagram, Fig. 61(a), is drawn to scale. The force

polygon, Fig. 61(b), is drawn to scale as far as known, AB, BC, CD. Since

4,sea

K—4'-><-

?,SM 7,000

f-j'->|<-f>l

I

.^0

(n) Space Diaqram
5cale:/"-8'

Fig. 61

DE sca/es^9,660/bs.

EAscale5 = 5,340lbs.

(b) Force Diaqram
Scale: l"--mooib5.

the system is in equilibrium, point A must be the closing point, but point 'E

is unknown. The location of point E is determined by the fact that the funic-

ular polygon must close also. Any convenient pole O is selected and the rays

OA, OB, OC and OD are drawn. The funicular, polygon is begun at any con-

venient point on any one of the forces, as point m on force Ri. String oa is

drawn parallel to ray OA across the "a" space. From the point at which oa

intersects ab, ob is drawn parallel to OB across the "6" space. Strings oc and

od are drawn in a similar way. Since the funicular polygon must close, string

oe must necessarily run from m to n. In the force diagram, ray OE must be

parallel to string oe in the space diagram, so point E is determined. Vector

DE represents the reaction R2 to scale and vector EA represents the reaction Ri.

200 300

^S=^,
Fia. 62

and Ri of the overhanging beam shown in Fig. 62.

Ans. Ri

Problem 1. A beam 13 ft. long, sup-

ported at the ends, has a load of 3000 lbs.

4 ft. from the left end and one of 1000 lbs.

3 ft. from the right end. Determine the

reactions.

Ans. Ri = 2310 lbs. Ri = 1690 lbs.

Problem 2. Solve for the reactions Ri

544 lbs. Ri = -44 lbs.
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Problem 3. Solve for the reactions Ri and B2 of the cantilever beam
shown in Fig. 63. ,„

Ans. B, = 1050 lbs. R2 = 1200 lbs. 1 R, I

IijL 7'- J33. Equilibrium of Parallel Forces in

Space. In case all of the forces of a

given system of parallel forces are not in ^^°- ^3

the same plane, the principles of Arts. 31 and 32 must be slightly

modified.

Algebraically. If a system of parallel forces in space is in equi-

librium, the resultant R = and the moment M = with respect to

any axis in space.

Graphically. If a system of parallel forces in space is in equi-

librium, the projection of the system upon any plane constitutes a

coplanar system of parallel forces in equilibrium.

Some problems of this kind may be simplified by replacing one

or more pairs of forces by their resultant so as to reduce the system

to a coplanar system.

EXAMPLE.

A horizontal equilateral triangular plate ABC, 3 ft. on a side, is supported

at the vertices. What are the three reactions due to a load of 100 lbs. acting

at a point on the median line 1 ft. from vertex A?
Solution:— The altitude of the triangle is 2.6 ft. The distance from the

base BC to the load is 1.6 ft. Equation SAf = for axis through the edge BC
gives

100 X 1.6 = 2.6 A.

A = 61.5 lbs.

By symmetry, reaction B = reaction C.

Equation SF = gives

B-\-C + 61.5 = 100

B -\-C = 38.5

B = C = 19.25 lbs.

Problem 1. A stick of timber 12 ft. long and of uniform cross section is to

be carried by three men, one at the rear end, the others at the ends of a cross-

bar under the stick. How far from the front end should it be placed in order

that each man may carry the same weight. Ans. 3 ft.

Problem 2. A triangular flat plate ABC has side AS = 8 ft., BC = 6 ft.

and CA = 10 ft. If the plate is placed horizontally and supported at the

three corners, what are the three .reactions due to a load of 100 lbs. resting on

the plate at a point 1 ft. from side AB and 1 ft. from side BCl
Ans. A = 12.5 lbs. B = 60.83 lbs. C = 16.67 lbs.
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GENERAL PROBLEMS.

Problem 1. A beam 4 ft. long weighing 40 lbs. has a load of 100 lbs. at

the left end and one of 30 lbs. at the right. At what point will it balance?

Ans. 1.176 ft. from left end.

Problem 2. A force P of 40 lbs. is acting vertically upward. Another

force Q of 20 lbs. is acting vertically downward 2 ft. to the right of P. Deter-

mine the amount and position of their resultant.

Ans. 20 lbs. upward, 2 ft. to the left of P
Problem 3. A cantilever truss has dead loads and wind loads acting upon

it as shown in Fig. 64. Determine the amount and direction of the resultant

of these loads. Ans. 15,600 lbs. at 7° 23' with the vertical, V.

Problem 4. Determine the amount, direction and position of the resultant

of the wind and dead loads on the truss shown in Fig. 65.

Ans. 21,920 lbs. at 7° 30' with V. Resultant cuts lower chord 1.5 ft. to left

of middle.

Problem 5. Determine the amount, direction and position of the resultant

of the wind forces on the truss shown in Fig. 66.

Ans. 4670 lbs. horizontal, 6.25 ft. below lower chord.

Problem 6. If the total dead load of the truss shown in Fig. 66 is 12,000

lbs., find the resultant of all the loads.

Ans. 12,875 lbs. at 21° 15' with V, cutting lower chord 2.43 ft. to left of

middle.

Problem 7. A traction engine carries 15,000 lbs. weight on the two driving

wheels and 4500 lbs. on the steering wheels. The distance between the front

and rear axles is 11 ft. 8 in. Find the position of the resultant.

Ans. 2.69 ft. in front of drive wheels.
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Problem 8. A beam 6 ft. long has forces acting upon it as follows: 100 lbs.

downward at the left end; 200 lbs. upward 1 ft. from the left end; 400 lbs.

downward at the middle; 300 lbs. upward at the right end. Determine the

resultant. Ans. The resultant is a couple of + 800 ft.-lbs. moment.
Problem 9. Forces parallel to the Z axis and all acting in the same direction

are located as follows: 10 lbs. at (2', 4'); 20 lbs. at (1', 2'); 30 lbs. at (4', 1').

Determine the amount and position of the resultant.

Ans. 60 lbs. at (2.67', 1.83').

Problem 10. The sketch in Fig. 67 represents an A. T. & S. F. passenger

locomotive. Dimensions are given to the nearest foot. The weight on the

driving wheels is 147,400 lbs.; on the truck is 28,600 lbs.; on the trailers is

38,600 lbs. The weight of the tender is 135,400 lbs. Find the distance of the

front wheel from the edge of a turntable 100 ft. in diameter for perfect balance.

Ans. 18.2 ft.

U5'4!--9'-->i<546--/^'-;>UiS'-4«-7-d<--7'J«5y<6'>j

Fig. 67

Problem 11. A force of 100 lbs. is acting downward at each corner of a

horizontal equilateral triangle ABC, 10 ft. on each side. Determine the posi-

tion of the resultant. Ans. 5.77 ft. from each vertex.

Problem 12. A counter-clockwise couple of 2 lbs. X 2 ft. in the XY plane

is to be combined with a counter-clockwise couple of 3 lbs. X 1 ft. in the YZ
plane. Find the magnitude and direction of the resultant couple.

Ans. +5 ft.-lbs. Its plane is parallel to the Y axis and is at an angle of

36° 40' with the XY plane.

Problem 13. If a wagon is coupled too long for a platform scale to accommo-

date it, will the same result be obtained by weighing the front part and the rear

part separately and adding the weights?

Problem 14. Eeverse the force at vertex C in Problem 11 and solve.

Ans. 100 lbs., 8.66 ft. from AB.
Problem 16. Forces of 40 lbs., 60 lbs. and 80 lbs. act vertically downward

at the corners A, B and C, respectively, of a horizontal equilateral triangle,

3 ft. on a side. Locate the resultant.

Ans. 1.156 ft. from AB; 0.578 ft. from BC.

Problem 16. Equal parallel forces act downward at the corners of a

horizontal triangle with sides of 6 ft., 8 ft. and 10 ft. Locate the resultant.

Ans. 2 ft. from the 8-ft. side; 2.67 ft. from the 6-ft. side.

Problem 17. A balance is slightly out of adjustment, one arm being longer

than the other. Will it give accurate results by weighing first in one pan, then

in the other, and averaging?

Problem 18. A workman closes a gate valve by exerting a pressure of

25 lbs. with each hand at opposite sides on the rim of a hand wheel 2 ft. in



38 APPLIED MECHANICS [Chap, n

diameter. At another time he thrusts a bar through the wheel and exerts the

pressure at only one side, 3 ft. out from the center. What pressure must he

exert? What is the difference in action in the two cases? Ans. 16| lbs.

Problem 19. The movable weight of a steelyard weighs 6 lbs. The short

arm is 3 ins. long. How far apart must the pound graduations be placed?

Ans. 5 inch.

Problem 20. One end of a bar 10 ft. long is hinged at the wall and the

other rests on a smooth floor 6 ft. below. The bar carries a load of 200 lbs.

at the middle. What are the reactions? {Note:— A smooth surface can exert

only a normal reaction.) Ans. 100 lbs. each.



CHAPTER III.

NONCONCURRENT, NONPARALLEL FORCES.

34. Composition of Nonconcurrent, Nonparallel Forces in a

Plane; Graphic Methods. Let F^, F2, F3, etc., Fig. 68, be the

forces to be combined. Fi and F2 are transferred along tiieir lines

of action until they intersect at

m, where they are combined into

their resultant Ri. Ri is trans-

ferred along its line of action until

it intersects the hne of action of

F3, at n. F3 is also transferred

along its hne of action until it is

in the proper position, F3', where

it is combined with Ri into the resultant of all three forces R^. If

there are other forces the same procedure may be followed until

the final resultant is found.

If the forces are so nearly parallel that no intersection can be

obtained, any one of the forces may be broken up into two com-

ponents. Combination with the other forces may now be made as

Fig. 68

Force Diagram

(b)

Space Diagram

Fig. 69

above. As in the case of parallel forces, both space and force

diagrams should be used. In Fig. 69, let the forces be AB, BC
and CD, acting along ab, be and cd respectively. At m, AB may be

resolved into two components, AO and OB. OB and BC may be

combined into their resultant OC at n. OC and CD may be com-
39
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bined into their resultant OD at p. Finally, AO and OD may be

combined into their resultant AD at q. AD is then the resultant

of the entire system.

Another force, equal and opposite to the final resultant and

colinear with it, will hold the system in equilibrium.

Also, conversely. If a system of nonconcurrent forces in a plane

is in equilibrium, the farce polygon closes and the funicular polygon

closes.

If the force polygon closes but the funicular polygon does not

close, the resultant is a couple. In Fig. 70, force vectors AB, BC
and CD form a closed polygon,

with point D coinciding with

point A. These forces act along

lines of action ab, be and cd re-

spectively in the space diagram.

From any point 0, rays OA, OB,

OC and OD are drawn. In the

space diagram the corresponding

strings oa, ob, oc and od are drawn.

Strings oa and od are parallel but not cohnear, so the system is

reduced to the two equal parallel forces AO and OD acting /

distance apart.

Problem 1. Combine the wind and

dead load forces acting upon the truss

in Fig. 71 into their resultant, graph-

ically

Ans 27,540 lbs. at 4° 10' with V.

B cuts AB 0.63 ft. to the left of the

middle.

Force Diagram Space Diagram

Fig. 70

XT'
V
w

35. Composition of Nonconcurrent, Nonparallel Forces in a

Plane; Algebraic Method. The amount of the resultant R of

any system of nonconcurrent, nonparallel forces in the same plane

is given by the equation

Its direction angle d with the x axis is given by

Tan. =11;.

As in the case of parallel forces, the theorem of moments is

readily extended to this case:



Art. 36] NONCONCURRENT, NONPARALLEL FORCES 41

For any system of forces in a plane, the moment of the resultant of

the system with respect to any point is equal to the algebraic sum of the

moments of the several forces with respect to the same point.

By means of this principle the position of the resultant R may be

determined by writing the equation of moments with respect to

any point. If the moment arm of the resultant is denoted by a,

and the moment arms of the several forces by ai, a^, etc.,

Ra = Fiai + ^202 + , etc.

Another force equal and opposite to R and coUnear with it will

hold the system in equilibrium.

EXAMPLE.

As an example, Problem 1 of Art. 34 will be solved by the method of this

article. The vertical components of the wind forces in turn are 866, 1732 and

866. The horizontal components are in turn 500, 1000 and 500.

XF,; = 500 + 1000 + 500 = 2000.

SFy ^ 866 + 1732 + 866 + 3000 + 6000 + 6000 + 6000 + 3000 = 27,464.

R = V{xFxy + (XFyY = 27,540 lbs.

The angle 8 with the horizontal is given by

e = 85° 50'.

To locate B, use point A as the center of

moments.

27,540 X o = 24,000 X 15 + 4000 X 8.66.

a = 14.33 ft.

Problem 1. In Fig. 72, determine the

resultant of the three forces in amount and

direction. Determine also its perpendicular

distance a from point A.

Am. B = 3228 lbs. B = 85° 05' with H.

36. Reduction of a System of Forces

to a Force and a Couple. Any system of

forces in a plane may be reduced to a force

through any given point and a couple.

Let F, Fi, etc., Fig. 73, be the system of

forces. At any point along its line of

action, F may be resolved into its X and

Y components, F^, and Fy. By Art. 30,

l^i°- '^3
force Fy may be resolved further into an

equal force Fy through 0, and a couple Fy X OM. F^ may also
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be resolved into an equal force through 0, and a couple F^ X ON.
Each force in turn may be resolved similarly. The resultant of

the forces at is

R = V(SF,)2 + (SFJ^

and the resultant of all the couples is a single couple SM.
For equilibrium of the system,

R = Q and SM = 0.

Conversely, // a system of nonconcurrent,

nonparallel forces in a plane is in equilibrium,

the algebraic sum of the forces along any line

is zero and the moment with respect to any axis

is zero.

t \#/l
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a two-force member are necessarily axial, producing direct com-

pression or tension in the member, for if they were not axial they

would not be colinear and could not hold the member in equi-

librium. Since the internal stress in a two-force member is

always axial, a section may be made through it in taking a free

body.

If any member of a structure has forces applied at three or more

points, it is called a Three-force Member. Since the stress is in

general not axial, a section should not be made through a three-

force member in taking a free body, but the entire member should

be taken. If another three-force member joins the one considered

as the free body, the X and Y components of the action of the

other member upon the free body must be introduced if the direc-

tion of their resultant is not already known.

If a body is in equilibrium under the action of three forces, they

must intersect in a conunon point or be parallel, and the resultant

of any two must be equal and opposite to the third. The boom
CEF, Fig. 75, is a three-force member, shown as a free body in

Fig. 76(b). The force at F is the external load P That at E is

equal and opposite to the force at E on the brace EB. Since these

two are known in direction, their intersection at G determines

another point in the line of action of the force at C. Likewise, if

the entire crane is considered as a free body, the direction of the

reaction at A is determined by the intersection of the lines of

action of force P and the horizontal reaction at D.

If a body is in equilibrium under the action of four forces, the

resultant of any two must necessarily be equal and opposite to the

resultant of the other two. If one of the four forces is wholly

known and the directions of the others are known, the three

unknown forces may be determined. This is illustrated in Fig.

76(c). The resultant of the forces at C and D must be equal and

opposite to the resultant of the forces at A and B; that is, R is

equal and opposite to Ri and is colinear with it.

The method of procedure in solution is to intersect the forces in

pairs and join the two points of intersection. This gives the line

of action of the resultant of each pair. With the force C known of

the system C, D, R, the two unknown forces D and R may be

determined. Resultant R is equal and opposite to Ri, so the

system Ri, A, B, can be solved.

If five or more forces are acting upon a body in equilibrium, two
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or more can usually be combined so as to reduce the system to a

four-force system, after which it can be solved as above.

38. Problems in Equilibrium; Forces in a Plane. The prin-

ciples of Arts. 34-37 are useful in the solution of an important

class of problems occurring in engineering work. The usual case

is that in which a certain system of forces is known to be in equi-

librium but some of the forces are unknown and are to be deter-

mined.
EXAMPLE 1.

The cantilever truss of Fig. 77(a) is loaded with roof or "dead" loads as

shown. Determine the reactions at E and C by the algebraic method.

Fig. 77

Solution. — The reaction at .B is the same as the stress in the strut or com-

pression member DE. Since DE is a two-force member, its stress must be

axial, so is known in direction. The reaction at C is unknown both in amount
and direction, but must necessarily pass through point C. The free body

diagram is shown in Fig. 77(b). Let the reaction at C be called P and let that

at D be called Q. Also let the unknown angle between P and the vertical be

called e. Since the truss is in equiUbrium,

^Fo: = 0, XFy = and SM = 0.

The first equation gives

Q X 0.866 - Psinfl =0.

The second equation gives

Q X 0.5 + Pcosfl - 5000 = 0.

The third, with C as center of moments, gives

1250 X 17.32 + 2500 X 8.66 = Q X 11.5.

Q = 3750 lbs.

By substitution of the value of Q in the equations above,

P sin 9 = 3250.

PcosS = 3125.

By division. tan 9 = 1.04.

e = 46° 08'.

Sin 46° 08' = 0.721.

3250 ^ 3250

sine 0.721
P = 4510 lbs.
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P sin $ is really the X component of force P and P cos 6 is the Y component,

so the solution would be practically the same if the unknown force P were

replaced by Px and Py. Then

p = VpTTp?.
With Px and P^ replacing P, a simpler solution for the three unknown forces

is made possible. By writing the equation SM = with respect to the three

points of intersection of the unknown forces in turn, only one unknown quantity

occurs in each equation. Elimination between two equations is thus avoided.

This method should be used if all distances are known or are easily obtained.

EXAMPLE 2.

Determine all the internal stresses in the members of the pin connected

bridge truss shown in Fig. 78.

Solution: — The truss is symmetrical

and the loading is symmetrical, so each

reaction is one-half of the total load of

10,000 lbs.

Ri = R2 = 5000 lbs.

All of the members are two-force mem-
bers, so sections may be made through

them as desired in taking a free body.

Let a section be made through the

truss at mn, and let the part at A be taken as the free body, as shown in Fig.

79(a). The force Pi is the internal stress in AB, acting now as an externa!

force on the free body, and must be compression in order to balance Ri. Simi-

FiG. 78

larly the force F2 is the internal stress in AC and must be tension in order to

balance Pi. Since this free body is in equilibrium, 2Pj, = and SPi = 0.

Equation SPj = gives

6000 - Pi sin 45° = 0.

Pi = 7070 lbs. compression.

Equation SPi = gives

P, - 7070 cos 45° = 0.

P2 = 5000 lbs. tension.

The next free body taken is the joint at B, enclosed by section pq. The
free body diagram is shown in Fig. 79(b). There are two known forces acting

on the free body, the load, 2000 lbs., and the stress in AB. The action of this
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force on B must be equal in amount and opposite in direction to the force which

AB exerts on A, so is 7070 lbs. acting as shown. Inspection of the known
vertical forces acting at B shows that there is a larger force upward than down-

ward. Therefore for equilibrium Fi must have a component downward, so is

tension as shown. For equilibrium horizontally, Fz must be compression.

Equation i:Fy = gives

7070 sin 45° - 2000 - F, sin 45° = 0.

F4 = 4240 lbs. tension.

Equation SF^ = gives

7070 cos 45° + 4240 cos 45° - fa = 0.

Fs = 8000 lbs. compression.

It is not necessary that the true direction of the unknown stresses be deter-

mined before solution as above. If in either of the force diagrams the direc-

tion of an unknown force had been assumed incorrectly, the value obtained

would have been the same numerically but negative in sign.

Since the truss and loading are both symmetrical, the stresses in corre-

sponding members on the two sides of the truss are equal, so the solution need

not be carried further unless it is desired to complete it as a check.

If the stress in only one member had been required as for instance that in

BD, a shorter method would have been as follows: Let the section rs, Fig. 78,

be passed through the truss and let all to the left of the section be taken as the

free body. Fig. 79(c) shows the free body diagram. There are now three

unknown forces, but they are not concurrent, so the problem can be solved.

Equation XMo = gives

FsXlO - 5000 X 20 -I- 2000 X 10 = 0.

Fi = 8000 lbs. compression.

Stresses Fi and Fi can now be determined if desired.

Equation SFy = gives

Fi sin 45° -|- 2000 - 5000 = 0.

Fi = 4240 lbs.

Equation SMb = gives

F2 X 10 - 5000 X 10 = 0.

F2 = 5000 lbs.

The graphic method is especially well adapted to the solution of problems
of this kind. Each joint in turn is taken as a free body and the unknown
forces are determined by the principle that the force polygon for the free body
in equUibrium must close.

In Fig. 80(a) is shown the truss of Fig. 78 with the same loading but with
Bow's notation of lettering. The line of action of the 6000-lb. load is produced
backward so that all of the loads are taken in order between the reactions.

The force polygon for the first joint at the left, eaf, is shown in Fig. 80(b),

EA being the known reaction. AF = 7070 lbs. and FE = 5000 lbs. are

determined by this polygon, and are the stresses in af and fe respectively.

Since the force polygon must close, with the vectors following each other

around the polygon, the arrows must be in the direction shown. The stress
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AF is therefore downward toward the joint, compression, while the stress FE
is away from the joint, tension. The sequence of the letters in the direction

in which the polygon was drawn also indicates the direction of the stress. The

arrows should be placed on the members in the space diagram as the direction

of each stress is determined. The joint fabg is the next free body, the two

forces FA and AB being known. In Fig. 80(c) these are laid down in order

and by the closing of the polygon, forces BG and GF are determined. It should

be noted that in drawing the force polygon all of the known forces must be

taken first. Also, less confusion results if the forces are always taken in the

same order around the joints. The clockwise direction will usually be used,

as in the preceding solution.

Fig. 80(d) shows the force polygon for the middle joint, HI and IE being

the unknown forces determined. In this polygon point I coincides with point

F and vectors EF and IE are superimposed. Fig. 80(e) shows the force

polygon for joint ihcd, force ID being determined. This completes the solu-

tion, but the force polygon for the last joint may be drawn as a check, Fig.

80(f).

Since each of the internal stress vectors occurs twice, the force polygons

may be superimposed as constructed, so as to form one complete diagram

Fig. 80(g). The arrows on the stress

diagram may be omitted but they

should always be placed on the mem-
bers in the space diagram.

EXAMPLE 3.

The A-frame shown in Fig. 81(a)

supports a load of 8000 lbs. at the mid-

dle of member BD. Determine the

pin reactions at B, C and D caused by

this load, if the floor is considered to

be smooth. Use the algebraic method.

Solution:— Since the floor is smooth,

the reactions at A and E are neces-

sarily vertical. The frame and load-

ing are symmetrical, so each reaction

is 4000 lbs. If either the frame or the loading were not symmetrical, the

moment equations for the entire frame as a free body would determine the
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reactions. The structure consists entirely of three-force members, so each

must be taken as a free body. The cross bar BD, Fig. 81(d), is considered

first. The known force is 8000 lbs. downward at the middle. Since a three-

force member joins it at B and another at D, the vertical and horizontal com-

ponents of the reactions must be used. Either by moments or by symmetry

By = Dv = 4000 lbs.

Equation ZF^ = gives Bh = Dh, but neither one can be evaluated from

this free body. Member AC is next taken as the free body. Forces A and

Bv are now known; forces Bn, Ch and Cv are unknown.

Equation 2F„ = gives

4000 - 4000 -Cv = 0.

Cv = 0.

Equation SMc = gives

Bff X 6 + 4000 X 6 - 4000 X 9 = 0.

Bh = 2000 lbs.

Since Bh = Dh, Dh = 2000 lbs.

Equation ZFz = gives

Bh = Ch = 2000 lbs.

The pin reaction at C is therefore 2000 lbs. horizontal.

The pin reactions at B and D are given by

B = D = V2OOO2 + 40002 = 4472 lbs.

The angle B with the horizontal is given by

4000 ^
2000

= 63° 28'.

tan e =

Problem 1. Solve for the stresses in the members of the truss of Example 1.

Am. AB = 2500 lbs. T. BC = 3750 lbs. T. AD = 2165 lbs. C. BD =
2165 lbs. C. DC = 0.

Problem 2. Consider the load at D, Fig. 78, to be changed to 4000 lbs. and
solve for all stresses in the members.

Ans. AB = 7780 lbs. C. AC = 5500 lbs. T. BC = 4950
lbs. T. BD = 9000 lbs. C. CD = 3540 lbs. T. CE = 6500
lbs. T. DE = 9200 lbs. C.

Problem 3. The supporting cross bar AB of a platform
is 6 ft. long and holds weights as shown in Fig. 82. The
inner end is fastened to the wall by a hinge at A. A cable

BC at an angle of 30° with the vertical supports the other
end. Solve for the tension in the cable BC and the reac-

tion at A in amount and direction.

Ans. BC = 846 lbs. iJ = 630 lbs. 8 = 47° 50' with H.
Problem 4. Consider each member of the A-frame in

Example 3 to weigh 100 lbs. per linear foot and determine
the pin reactions B, C and D.

3255 lbs. horizontal. B = D = 5635 lbs. fl = 54° 42' with H.

800 400

Fia. 82

Ans. C
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39. Composition of Nonconcurrent, Nonparallel Forces in

Space. A system of forces, F, Fi, F^, etc., not in the same plane,

may be reduced to a single force through any given point and a

couple. Let F, Fig. 83, be one of the forces of the system. In-

troduce at point the opposite forces F' and F", each equal and

parallel to F. This does not affect the system in any way, since

they neutralize each other. Then F and F" constitute a couple

and the remaining force is F' equal to F, acting through point 0.

^^ 1^^^^

Fig. 83 Fig. 84

This may be repeated with each force in turn. Each force of the

concurrent system at is then resolved into its X, Y and Z com-

ponents and these are recombined, giving

R = V(SF,)2 + {^FyY + (^F.y

as shown in Fig. 84. The direction cosines are given by

cos a =
R

cos (3
=

R
cos t/

=
R

The couples may be combined by means of their vectors,

exactly the same as the force vectors were combined above but

a simpler method is the following. At any point along its line

of action, each one of the original forces may be resolved into its

X, Y and Z components. The algebraic sum of the moments of

these components with respect to the X, Y and Z axes in turn

gives Mx, My and Mz, which may be represented by their vectors.

The vector of the resultant couple is given by

Also,

M = VmJ + M/ + M,\

cos ai
M. . My,

M' cos9i=-^-

In general, then, a system of this kind tends to produce a trans-

lation of the body acted upon in the direction of R, and a rotation

in the plane of the resultant couple M.
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If SF^ = 0, ZFy = 0, SF. = 0, SM. = 0, ^My = and SM. = 0,

the force system is in equilibrium.

Conversely, // a body acted upon by a force

system of this kind is in equilibrium, these six

conditions are true.

Problem 1. Combine the forces shown in Fig.

85 into a force at and a couple. The sides of the

cube are 2 ft. long.

Am. R = 150 lbs. a = 67° 50'. = 153° 30'.

e = 76° 13'. M = 305 ft.-lbs. ai = 71° 40'.

ft = 90°. Si = 161° 40'.

2/

40. Problems in Equilibrium; Forces in Space. The condi-

tions of equiUbrium for nonconcurrent, nonparallel systems of

forces in space as given in Art. 39 may be taken in sets of three,

as follows: SF, = 0, ^Fy = 0, SM. = 0.

ZF^ = 0, ^F^ = 0, HMy = 0.

HFy = 0, I,F, = 0, HM:, = 0.

It will be seen that the first set gives the conditions necessary

for equilibrium of a coplanar system of forces in the XY plane; the

second set gives the conditions necessary for equilibrium of a

coplanar system of forces in the XZ plane; the third set gives the

conditions necessary for equihbrium of a coplanar system of forces

in the YZ plane. Also, SF^ and 2F^ are the X and Y components

of the projections of the forces on the XY plane and SMz is the

moment of these forces in that plane. Then it follows:

// a syst m of nonconcurrent, nonparallel forces in space is in equi-

librium, the proj ctions of these forces on any plane constitute a system

of forces in equilibrium.

By means of these prin-

ciples, unknown forces not

to exceed the number of

equations may be deter-

mined in any system which^

is known to be in equi-

librium.

Jraa'.

EXAMPLE 1. Si'de View

FlQ.

fnd View

Fig. 86 shows three views of a

simple windlass. It is required to determine P, ft' and R" for the poation
shown, R' and R" being the reactions at A and B respectively.
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Solution:— The free body diagram for the top view, the projection of the

figure on the XZ plane, is shown in Fig. 87(a). That for the side view, the

projection on the XY plane, is shown in Fig. 87(b). That for the end view,

<3:-^W

the projection on the YZ plane, is shown in Fig. 87(c). In these diagrams R'

is replaced by its horizontal and vertical components, Rh' and Ry. Also R"
is replaced by its horizontal and vertical components, Rn" and Rr" The
equation SMo = for Fig. 87(c) gives

P X 18 = 300 X 3.

P = 50 lbs.

The four other unknown forces in this projection cannot be determined.

With P known, the unknown forces in Fig. 87(a) can now be detericined.

Pb = P cos 45° = 35.35 lbs.

Equation 'SMa = gives

35.35 X 6 = Rn" X 5.

Rh" = 42.42 lbs.

Equation SMb = gives

35.35 X 1 = iSff' X 5.

Rh' = 7.07 lbs.

In Fig. 87(b), Pf = F sin 45° = 35.35 lbs.

Equation SMd = gives

35.35 X 6 + Rv" X 5 = 300 X 3.

Ry" = 137.6 lbs.

Equation SMe = gives

35.35 X 1 + 300 X 2 = P/ X 5.

Ry' = 127.1 lbs.

The amount and direction of R' and R" may now be determined if desired.

EXAMPLE 2.

Fig. 88(a) shows the dimensions, position and loading of a derrick. Deter-

mine the external reactions due to a load of 1200 lbs.

Solution: — The external forces on the derrick constitute a nonconcurrent,

nonparallel system in space, but by taking different parts of the derrick as free

bodies in turn, only concurrent systems need be considered. The first free
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body to be considered is the pulley at A, shown in its free body diagram in Fig.

88(b). If friction is neglected, the tension in any cable is constant throughout

its length. Then equation ZFy = gives

4 7' = 1200 (neglecting the slight angularity).

T = 300 lbs.

Fig. 88 Fig. 89

The pin at B has forces acting upon it as shown in Fig. 89(a), forces Ti and

P being unknown. Fig. 89(b) shows the graphic solution, from which Ti

scales 268 lbs. and P scales 1740 lbs.

Consider next a section made by the horizontal plane X — X, Fig. 88(a),

and let the part above the plane be taken as the free body. The system of

forces acting on this free body is concurrent, but not coplanar. The horizon-

tal projections of these forces, however, constitute a coplanar, concurrent

system in equilibrium and so may readily be solved. From Fig. 89(b) the

horizontal component of 5 Ti is 1250 lbs. From Fig. 90(a) and (b) it is seen

that the horizontal components of the stresses in CD and CE are each 1250

lbs. The stress in each, as shown in Fig. 90(c), is 1767 lbs.

JiSO
3rWS.

(a)
Hor.Comp'l,Z50

(o)

Fig. 90 Fig. 91

The compression in the mast is determined by considering the vertical

forces on the free body above plane X — X, Fig. 88(a). Let the compressive

stress in the mast be called V. The vertical component of the stress in CB is

480 lbs., as shown in Fig. 89(b). The vertical component of the stress in CD
is 1250 lbs. The vertical component of the stress in CE is 1250 lbs. as shown
in Fig. 90(c). Equation SFj, = gives

V - 1250 - 1250 - 268 - 480 = 0.

V = 3248 lbs.
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Next take the socket at F as the free body, Fig. 91(a). Equation ZFy =
gives

Bf = 3700 lbs.

Equation SFx = gives

Rh = 1818 lbs.

R = y/Ru'' -\-Rv' = 4120 lbs.

1 SIS
The angle with the vertical, e = tan"'^^ = 26° 10'. See Fig. 91(b).

If framed members are inserted at T>F and EF, they will carry the horizontal

components of the stresses in CD and CF to the foot of the mast.

Problem 1. Determine the reactions and the force P on the windlass of

Example 1 above, (1) when the handle is horizontal; (2) when the handle is

vertical.

Am. (1) Rv' = 130 lbs. Rb' = 0. Rv" = 120 lbs. Rh" = 0. P = 50 lbs.

(2) Rv' = 120 lbs. Ra' = 10 lbs. Rv" = 180 lbs. Ra" = 60 lbs.

P = 50 lbs.

Problem 2. In Example 2 above, consider the whole derrick as the free

body and solve for the vertical and horizontal components of the reaction at

the foot of the mast, and for the stresses in the legs.

Problem 3. Consider the boom of the derrick in Example 2 above to be

lowered until it is in the horizontal position. Determine the value of angle a,

(1) for maximum tension in EC; (2) for maximum compression in EC. (Do

not consider that the boom works in the smaller angle DFE, although it may
be so used.) Solve for the stresses in the boom, the mast and the stiff legs for

each position.

Ares. (1) 1740 lbs. C. 4065 lbs. C. 2350 lbs. T. in £C. 1175 lbs. T. in DC.

(2) 1740 lbs. C. 135 lbs. C. 2040 lbs. C. in EC. in DC.

41. Cord Loaded Uniformly Horizontally. A flexible cord

suspended from two points forms a smooth curve. Two cases will

be considered: First, that in which the cord carries a load which

is uniformly distributed horizontally. Second, that in which the

cord carries a load which is uniformly distributed along the cord.

The second case will be discussed in Art. 42.

Fig. 92 represents a part of a cord carry-

ing a load uniformly distributed horizon-

tally. Let w be the weight carried per

horizontal unit. Let 0. be the lowest

point on the cord, B any other point,

H the tension at 0, P the tension at B,

and X the horizontal distance between and B. The total load

on length OB is then wx, acting at ^ distance from 0. The part

OB is in equilibrium under the action of the three forces, H, P and
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wx, which are therefore concurrent at A. The equation UMb =
gives wx^ = 2 Hy.

f
--- '-

-"::T.a ^

This is the equation of a parabola with its origin at and its

axis vertical. If I is the total span and d is the sag at the middle,

Fig. 93, ^p

^-sTd
If T is the tension at the support, equations I^Fy = and

J:F^ = give

m • ^ wl
Tsmdi =

Y"

r cos 01 = fl.

By squaring the two preceding equations, adding, and extracting

the square root.

r =
v/(f

2

+ HK

Also, from the figure,

tan 01 = -^ •

Let s represent the length of the cord between the points of

suspension. The value of s is given by a logarithmic equation

derived in the calculus. This equation is accurate but is cum-

bersome to use. In order to obtain a simpler expression the log-

arithmic equation is expanded into a converging series, of which

the third and succeeding terms are so small that they may be

neglected without appreciable error. This gives

In terms of I and d,

= '+24^- (Approx.)

= i+-3y. (Approx.)
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If s and H are given to find I, a cubic equation results. The second

term is comparatively small, however, so that I may be replaced

by s in it, giving

1 = s- 2^-^. (Approx.)

A tightly stretched horizontal wire very closely approximates

the condition of uniform loading horizontally, as do also the cables

of a suspension bridge, Fig. 94, since the extra weight of the cables

^|TmTTTTTr.

Fig. 94

and hangers toward the ends is a small part of the total load carried.

The lengths of the hangers in the so-called "catenary" trolley wire

construction, Fig. 95, are really computed by the parabolic formu-

las of this article and not by the true catenary formulas. Allow-

ance must be made for the elasticity of the material used.

InsulatedSupport

-Messenger Cable
T I

Hangers Trolley Wire^

Fig. 95

For a wire with a sag of 1 per cent of the span, the error in H, T
or d, compared with the value given by the correct catenary, is

about x?5 of 1 per cent. For one with a sag of 10 per cent of the

span, the error is about 2 per cent.

Problem 1. A steel wire weighing 0.04 lb. per foot has a span of 200 ft.

and a tension at the lowest point of 300 lbs. What is the sag? What is the

length of the wire? What is the amount and direction of the tension at the

supports? Ans. 8 in. 200.00592 ft. 300.027 lbs. 9=0° 46'.

Problem 2. The cables of a suspension bridge have a span of 1200 ft., carry

a load of 800 lbs. per hnear foot per cable, and have a sag of 40 ft. at the middle.

Determine the tension at the middle, the tension at the ends and the length of

the cables. Ans. H = 3,600,000 lbs. T = 3,631,900 lbs. s = 1203.56 ft.

Problem 3. A messenger cable for a " catenary " trolley system weighs

0.3 lb. per foot and is stretched between supports 100 ft. apart with a tension

of 2300 lbs. What is the sag? (Assume H = T.) Ans. 0.163 ft.
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42. The Catenary. When the load on a cord is uniformly

distributed along its length, the curve which the cord assumes is

called the catenary. The equation of

the catenary curve will now be derived.

Let w be the weight of the cord per

unit length. Let 0, Fig. 96, be the

lowest point on the cord, A any other

point, s the length of the cord from

to A, H the tension at and T the

tension a.tA. Also letH be represent-

ed by the weight of an imaginary

length of the cord c, or H = wc. In

Fig. 96(a) the length of cord s is shown

as a free body in equilibrium. In Fig. 96(b) is shown the force

triangle, from which the relation is obtained,

Fig. 96

= tan0,

or

so

ws

wc

dx c

dif = ds^ — dx^,

Vds^ - dx^

By squaring and solving for dx,

dx

dx

cds

Vc^ + i

or

By integration

Jdx = c I
i/o

ds

Vc^ + t

X = clog,
s +Vc'^ + s^

(1)

The quantity e is the base of the Naperian system of logarithms,

and its numerical value is 2.718,28. The reduction to common
logarithms is made by the relation

0.4343 loge A = logioA.

Reduced to exponential form, equation (1) becomes

e"^ =
s + Vc^ + s^
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Solution for s gives

s = |U"-e~)- (2)

If this value of s is substituted in the original equation, there is

obtained the expression

dy = ^{e" — e "jdx.

If the origin is at and dy is integrated between the limits

and y, a complicated expression results. A simpler expression is

obtained by using 0' as the origin. The integration of dy is then

between the limits c and y.

By integration^
(X x\

^6" + e~~') - c,

^ e'-' + e
"=)•

(3)

By squaring (2) and (3) and subtracting,

j;2 = s2 + c\ (4)

From (1) and (4)

a; = cloge^-^!^- (5)

From the relation of the sides of the force triangle. Fig. 96(b),

2^2 ^ y,2p2 _|_ i^2g2 = y,2(-s2 _|. (.2) = w^y^.

T = wy. (6)

The related quantities are as follows:

Length Unit Weight Tension Span Deflection

2s w T 2xi=l y - c

The most useful problems, those in which the length, span and

weight, or the deflection, span and weight are given, can be solved

for the unknown quantities only by trial, on account of the form

of the logarithmic equation.

EXAMPLE 1

A cable 800 feet long, weighing 2 lbs. per foot, is stretched between two

points on the same level with a tension of 1200 lbs. What is the sag and the

span?
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Solution: — to = 2 and T = 1200. Equation (6) gives

y = 600 ft.

From equation (4)

c = 447.2 ft.

The sag is y — c = 152.8 ft.

From equation (5) the span is 2 re = 2 X 447.2 loge . ._ „ •

2x = 719.8ft.

EXAMPLE 2

If a cable weighing 2 lbs. per foot is stretched between points 800 feet apart

and sags 100 feet, what is the tension and the length of the cable required?

Solution: — This problem can be solved only by trial.

y =c + 100.

From equation (4)

c^ + 200 c + 10,000 = s» + c\

s = 10 V2 c + 100.

From equation (5)

.„„ , 10V2c + 100+c + 100
400 = cloge

It is found by trial that c = 810 will nearly satisfy this equation. With

this value of c,

y = 910 and T = 1820.

From equation (4)

s" = 2/^ — c^

s = 414.7 ft.

Total length = 2 s = 829.5 ft.

Problem 1. A wire 300 feet long, weighing 0.01 lb. per foot, has a tension

of 4 lbs. at each end. What is the span and the sag?

Ans. 292.7 ft. 29.2 ft.

Problem 2. A 1-inch cable, weighing 1.58 lbs. per foot, carries telephone

cables and supporting cross pieces weighing 0.22 lb. per foot. The span

between towers is 862 feet and the sag is 50 feet. Find the length of the cable

and the tension. Ans. 864.2 ft. 3408 lbs.

Problem 3. A chain 50 feet long, weighing 3 lbs. per foot, is stretched

between two points on the same level 40 feet apart, ^^'hat is the sag and the

tension? Ans. 13.3 ft. 90.5 lbs.
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GENERAL PROBLEMS.

Problem 1. Fig. 97 represents a simple triangular truss.* Solve for the

reactions and the stress in each member due to the load.

Ans. Ri = 202 lbs. R^ = 298 lbs. AB = 456 lbs. C. BC = 505 lbs. C.

AC = 408 lbs. T.

Fig. 97

Problem 2. Compute the reactions Ri and Ri and the stress in each

member of the truss shown in Fig. 98.

Ans. Ri = R2 = 2500 lbs. AB = 5000 lbs. C. AD = 4330 lbs. T.

BD = 2000 lbs. T.

Problem 3. The members of the truss shown in Fig. 99 weigh 100 lbs. per

Unear foot. Solve for the reactions and the pin pressure at B in amount and

direction.

Ans. Ri = 929 lbs. R2 = 871 lbs. B = 885 lbs. at 8° 20' with H.

Fig. 100

Problem 4. Consider the reaction at A of the cantilever truss shown in

Fig. 100 to be horizontal. Solve for the reactions and the internal stresses.

Ans. A = 4000 lbs. B = 5656 lbs. at 45° with H. AB = 3000 lbs. C.

AC = 4472 lbs. T. BC = 2236 lbs. C. CD = 2236 lbs. T. BD =
2000 lbs. C.

Problem 6. If there is no member AB in the truss of Fig. 100, determine

the amount and direction of the reactions at A and B.

Ans. A = 5000 lbs. at 36° 50' with H. B = 4120 lbs. at 14° with H.

Problem 6. In the truss shown in Fig. 101 the reaction of the strut FB
is horizontal. Determine the reactions and the internal stresses.

* Consider aU trusses in this set of problems to be pin-connected at all

joints.
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Ans. A = 2655 lbs. at 57° 20' with H. S = 2433 lbs. AB = 827 lbs. T.
AC = 1943 lbs. T. BC = 1654 lbs. C. BE = ED = 1000 lbs. C. CE =
500 lbs. T. CD = 866 lbs. T.

Fig. 101 Fig. 102

Problem 7. Solve for the reactions and the stress in each member of the

truss shown in Fig. 102.

Am. R, = 11,500 lbs. ft = 12,500 lbs. AB = 13,280 lbs. C. AC =
6640 lbs. T. BC = 4042 lbs. T. BD = 8660 lbs. C. CD = 2887 lbs. T.

CE = 7216 lbs. T. DE = 14,433 lbs. C.

Problem 8. The roof truss shown in Fig. 103 is held by a hinge at G and is

supported on rollers at A. Solve for the reactions and the internal stresses

caused by the wind loads shown.

Ans. A = 2310 lbs. Oy = 1155 lbs. Gh = 2000 lbs. BD = AB = 2888

lbs. C. AC = CD = 2000 lbs. T. BC = 2000 lbs. C. DF = FG = 2310

lbs. C. CE, DE, EF and EG aU equal zero.

Fig. 103 Fig. 104

Problem 9. The diagonals BE and CD of the truss shown in Fig. 104 can
take only tensile stress. When the truss is loaded as shown, determine which
diagonal is acting and the amount of the stress in it.

Ans. CD = 1600 lbs. T.
Problem 10. A cantilever frame is built up of members pinned together as

shown in Fig. 105. Determine the amount and direction of the reactions at

A and B and the amount of the stress in the diagonals due to the load of 100 lbs.

at the end.

Ans. A = 608 lbs. at 9° 25' with H. B = 600 lbs. hor. CE = 424 lbs. T.
DE = 424 lbs. C.
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Ct<--Z'-^-2'-i]

Problem 11. Fig. 106 shows a frame supporting a 2-foot pulley. If the

cord CIJ carrying a load of 240 lbs. is fastened at C, what is the stress in FH2
Ans. 170 lbs. T.

Problem 12. Fig. 107 shows two views of a gin pole

held by three equally spaced guy wires, each at an angle

of 30° with the pole. If the force of the wind is 1000

lbs. acting at the middle of the pole at right angles

to the vertical plane through guy wire OC, determine

the stress in each wire caused by the wind.

Am. OA =0. OB = 1154 lbs. T. OC = 577 lbs. T.

Problem 13. A bar 10 feet long is held by a pin at

the bottom end and rests at an angle of 45° against a

smooth vertical wall. It carries loads of 100 lbs., 200

lbs. and 300 lbs. at 3 feet, 6 feet and 9 feet respectively

from the lower end. What are the reactions?

Ans. Top, 420 Ibs.hor. Bottom, 7321bs.at55°withH.

Problem 14. The A-frame shown in Fig. 108 is

pinned at the joints B, C and D, and is supported by
a smooth floor AE. Determine the pin reactions at B,

C and D caused by the 4000 lbs. load.

Ans. B = 1667 lbs. at 53° 10' with H. C = 1024 lbs,

D = 2848 lbs. at 69° 30' with H.

C

(b)

Fig. 107

at 12° 35' with H.

r<-J--^- -^'---->!<-^-'->k-?->

Fig. 108

Problem 15. Determine the stress in the

brace BE of the crane shown in Fig. 109. De-

termine also the maximum tensile and com-

pressive stresses in the stiff legs DR and D(? as the boom rotates about the post.

Arts. BE = 1618 lbs. DH and DG max. tens, and comp. = 1455 lbs.

Fig. 109



62 APPLIED MECHANICS [Chap, hi

Problem 16. The simple crane shown in Fig. 110 carries a load of 1000 lbs.

at the end of the boom. The post AD weighs 600 lbs., the boom CF 400 lbs.

and the brace BE 300 lbs. Determine the reactions at A and D and the pin

pressures at B, C and E.

Ans. A = 2528 lbs. at 65° 30' with H. D = 1050 lbs. B.. E = 2371 lbs.

at 42° 35' with H. B = 2584 lbs. at 47° 20' with H. C = 1761 lbs. at 6°

30' with H.

i-J-

FiG. 110 Fig. Ill

Problem 17. Determine the stresses in CD and BD, and the reactions at

A and C in the crane shown in Fig. 111. Neglect the weight of the crane

itself.

Ans. CD = 1237 lbs. T. BD = 1200 lbs. C. C = 240 lbs. H. A = 384

lbs. at 51° 20' with H.

Problem 18. In the crane

shown in Fig. 112, solve for

the stresses in BD and CD
caused by the load of 50,000

lbs. at D. If the boom
weighs 2000 lbs. and the

weight on the car is imi-

formly distributed, what must the car weigh in order that it does not tip about

point A?
Ans. BD = 100,000 lbs. C. CD = 86,600 lbs. T. Wt. = 113,300 lbs.
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and in the position shown is at an angle of 15° with the vertical. The dipper

and load weigh 12,000 lbs. BD is an A-frame, 40 feet in altitude and spread

20 feet at the base. In the filling position consider the pressure to be 10,000

lbs. at right angles to the handle. Solve for the stresses in the cable FO, the

cables DG and DA, the pin reactions at E and C and the compression in each
member of DB.

Ans. FG = 24,S60 lbs. DG = 41,000 lbs. DA = 61,700 lbs. B = 4110
lbs. at 62° 30' with H. C = 90,100 lbs. at 39° 40' with H. DB = 23,240

lbs. in each leg.

f

Fig. 114

Problem 20. In the derrick shown in Fig. 114, four guy cables, each at an
angle of 30° with the ground, support a mast 55 ft. high. The boom is 85 feet

long. When the boom is in the horizontal position and a load of 50 tons is

being lifted, determine the stresses in the cables FG, cable EG and boom EG.
Determine also the maximum stress that can come upon any one of the four

guy cables as the boom is rotated horizontally.

Ans. FG = 46,000 lbs. in each cable. Cable EG = 33,330 lbs. Boom
EG = 187,880 lbs. C. Max. in guy cable = 178,450 lbs. T.

Problem 21. The steam hoist represented in Fig. 115 is

raising a weight of 800 lbs. When the crank is in the position

shown, determine the stress in the connecting rod BD, the

pressure of the guide on the cross-head N and the steam

pressure P for uniform motion.

Ans. BD = 1622 lbs. N = 270 lbs. P = 1600 lbs.

Fig. 115 Fig. 116

Problem 22. Determine the stress in the link AB and the shear on the

rivet E of the ice tongs shown in Fig. 116 when supporting a cake of ice weigh-

ing 100 lbs. Ans. AB = 70.7 lbs. E = 100 lbs,



64 APPLIED MECHANICS [Chap, in

Problem 23. Determine the stresses in the members AD, DE, BD and BE
of the simple wagon-jack shown in Fig. 117. The jack rests upon the ground

at D and E.

Am. AD = 141 lbs. T. DE = 100 lbs. T. BD = 200 lbs. C. BE = 141

lbs. C.

casS

Fig. 117

Problem 24. The bridge shown in Fig. 118 has its lower chord in the shape

of a parabola. The total weight of the bridge is 1500 tons. Find the stress

in the lower chord at the piers and at the middle. (The bridge is like the

suspension bridge inverted.)

Ans. 1,352,000 lbs. at pier. 1,125,000 lbs. at middle.

Problem 25. A suspension foot bridge is 80 feet long, 4 feet wide and carries

a load of 100 lbs. per square foot of floor area. It is supported by two cables

which have 12 ft. of sag. What is the stress in each cable? What is the length

of the cable between supports? Ans. 15,530 lbs. 84.8 ft.

Problem 26. A wire can safely sustain 70 lbs. tension. Its weight per

hnear foot is 0.025 lb. If the allowable sag is 1.5 inches, what is the maximum
spacing for posts? If 6 inches sag can be allowed, what is the spacing required?

Ans. 53 ft. 106 ft.

Problem 27. A cable weighing 0.3 lb. per linear foot is stretched between

posts 160 ft. apart with tension at the middle of 500 lbs. What is the sag?

What is the amount and direction of the tension at the end?

Ans. 1.92 ft. 500.58 lbs. 9=2° 45' with H.

Problem 28. A cable 800 feet long, weighing 0.5 lb. per foot, has 250 lbs.

tension at each end. What is the sag? What is the distance between sup-

ports? Ans. 200 ft. 660 ft. (c = 300 ft.)



CHAPTER IV.

CENTROIDS AND CENTER OF GRAVITY.

43. Centroid of a System of Forces with Fixed Application

Points. In all of the previous discussions of forces applied to

rigid bodies, it has been assumed that the force could be applied at

any point along its line of action. In some cases forces are con-

sidered to be applied at certain definite points which remain fixed,

no matter how the body is displaced or the system of forces

rotated. Consider a system of particles, each of which is acted

upon by a force proportional to its mass, and let these forces be

parallel to each other. It is evident that if the system of par-

ticles is rotated while the forces remain fixed in direction, the

result is the same as if the system of particles remained fixed in

space and the force system were rotated, each force about its

point of application.

Let such a force system be acting upon a system of particles in

the direction of the Y axis. The distance of the resultant from the

XY plane and also from the YZ plane may be determined by the

theorem of moments. Then consider each force of the system to

be rotated about its point of appUcation until the system of forces

is parallel to the X axis. The line of action of the resultant is

necessarily at the same distance from the XY plane that it was

before rotation. Also, its distance from the XZ plane may now be

determined, and its point of intersection with the fine of action of

the resultant in its original position must necessarily be the point

about which the resultant was rotated. Next, if from this position

each force is rotated about its point of application until it is

parallel to the Z axis, the line of action of the resultant is neces-

sarily at a fixed distance from the XZ plane during the rotation.

Finally, if from this last position each force is rotated about its

point of application back to its original position parallel to the

Y axis, the line of action of the resultant remains at a fixed dis-

tance from the YZ plane and must necessarily return to its original

position. In order for it to do this, the last two rotations must

necessarily have been made about the same point as the first.

65
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For if the second rotation had been made about a point on the

resultant which had a different X coordinate from the first point

of rotation, the final position of the resultant would have had a

different X coordinate and therefore could not have coincided with

the original position. Similarly if the third rotation had been

made about a point which had a different Z coordinate from the first

point of rotation, the final position of the resultant would have had

a different Z coordinate and therefore could not have coincided

with the original position. This point in the resultant is there-

fore the one fixed point in the system for any possible rotation, and

is called the centroid of the system. Its coordinates are denoted

by X, y, z. (Called "gravity" x, etc.)

Each particle of a body is attracted by the earth, and the force

of this attraction is proportional to the mass of the particle. It is

obvious that the points of application of these forces remain

unchanged for all positions of the body, and that the fines of action

of the forces for bodies of the size considered in engineering prob-

lems are practically parallel. The resultant of all these attractive

forces is called the force of gravity, or the weight of the body, and its

fixed application point is called the center of mass or center of

gravity of the body. Ordinarily it is only necessary to consider

this resultant force.

44. Centroids of Solids, Surfaces and Lines Defined. The
centroid of a geometric solid is that point which coincides with

the center of mass of a homogeneous body occupying the same
volume.

The centroid o." a surface is the limiting position of the center

of gravity of a homogeneous thin plate, one face of which coincides

with the surface as the thickness of the plate approaches zero.

The centroid of a line is the limiting position of the center of

gravity of a homogeneous thin rod whose axis coincides with the

line as the cross-sectional area of the rod approaches zero.

45. Moment with Respect to a Plane. The moment of a

force with respect to a plane parallel to its line of action is the

product of the force and the perpendicular distance from the

force to the plane, as discussed in Art. 26. By analogy, the mo-
ment of a solid, surface or line with respect to a plane is equal to the

product of the solid, surface or line and the perpendicular distance

from the plane to its centroid. Since solids, surfaces and lines are

not vector quantities, the sign of the moment must be provided for
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by assigning the plus sign to the ordinates on one side of the plane

and the minus sign to those on the other.

By the principle of Art. 26, the moment of the weight of a body

with respect to a plane is equal to the sum of the moments of the weights

of the several particles of the body with respect to the same plane.

For the ZY plane, Wx = I.wx.

For the XY plane, Wz = I,wz.

For the XZ plane, Wy = ^wy.

If the moment of the weight of a body with respect to a plane is

zero, the center of gravity of the body is in that plane.

The moment of a solid, surface or line with respect to a plane

is equal to the moment of its separate component parts with

respect to the same plane. For if w is the unit weight of a homo-
geneous body and V is its volume, its total weight is wV = W.
By the above principle,

wVx = wvjXi + WV2X2 + WV3X3 +, etc.,

or Vx = ViXi + v^ooi + ViOi^ +, etc.

Similar propositions hold true for surfaces and lines.

If the moment of a solid, surface or line with respect to a plane

is zero, the centroid is in that plane; and, conversely, if the cen-

troid of a solid, surface or line is in a certain plane of reference,

the moment with respect to that plane is zero.

46. Planes of Symmetry and Axes of Symmetry. If a solid,

surface or line is symmetrical with respect to any plane, the

centroid is in that plane.

If two or more planes of symmetry intersect in a line, this line

is called an axis of symmetry and contains the centroid.

If three or more planes of symmetry intersect each other in a

point, this point is the centroid.

Similar propositions are true for the center of gravity of a mass

if homogeneous.

An observation of the planes of symmetry will enable the cen-

troids of many geometrical figures to be located either partially

or completely. The following are illustrations:

The centroid of a straight line is at its middle point.

The centroid of a circular arc is on the bisecting radius of the arc.

The centroid of a circle or its circumference is the center of the

circle.

The centroid of a parallelogram or its perimeter is the inter-
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section of the lines bisecting the pairs of opposite sides. It is

likewise the intersection of the two diagonals.

The centroid of a sphere or of its surface is the center of the

sphere.

The centroid of a cylinder or of its surface is the middle point of

its axis.

The centroid of a right prism with parallel bases is the middle

point of its axis.

The centroid of a right cone is on its axis.

The centroid of a thin plate is midway between the positions of

the centroids of the faces.

47. Centroid of a System of Forces with Copianar Applica-

tion Points. In case the application points of the forces of a

system are fixed and copianar, two moment equations will be

sufficient to locate the centroid if the axes are taken in the plane

of the application points. By Art. 43, the centroid remains fixed

for any rotation of the force system, so the forces may be assumed

to be rotated until they are normal to the plane of the application

points. Then, by the theorem of moments,

_ HFx^- Sf
'

- _ ^Fy
y - ZF

'

The graphic method is readily applied to this case. Assume the

system of forces to be rotated until the forces are in the plane of

the apphcation points, preferably parallel to one of the axes. The
position of the resultant may be determined by the method of

Art. 25. Again assume the system to be rotated through some

angle in its plane, preferably until parallel to the other axis. The
position of the resultant may be determined as before. The
intersection of these two resultants is the position of the centroid.

Problem 1. Parallel forces of 10 lbs., 24 lbs., 30 lbs. and 16 lbs. have

application points in the XY plane as follows: (2", 3"), (4", 1"), (3", 4") and

(0", 0"). Locate the centroid of the system if all of the forces are in the same

direction. Am. 2..575", 2.175".

Problem 2. Solve Problem 1 if the first force is reversed in direction.

Ans. 2.767", 1.90".

Problem 3. Solve Problem 1 if both the first and second forces are reversed

in direction. Ans. - 2.17", 5.50"-
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48. Centroids of Simple Solids and Surfaces. For many
simple surfaces and solids, enough planes or lines containing the

centroid may be determined to locate the centroid completely.

Triangle. The centroid of a triangle is at the intersection of

its medians.

Proof. In Fig. 119, the centroid of any elementary

strip MN parallel to the base and of infinitesimal

width is on the median AD, therefore the centroid

of the triangle is on the median. Likewise it is

on the median BE, and therefore is at their point of

intersection 0.

By geometry, OD = i AD. Therefore the cen-

troid is on any median, at a distance of one-third

its length from its intersection with the base.

The perpendicular distance from to BC is one- „ ,.„

third the altitude of the triangle; therefore, the cen-

troid of a triangle is at the intersection of two lines drawn parallel

respectively to two sides of the triangle and distant one-third of

the altitude from the base.

Slant Area of Pyramid. The centroid of the slant area of a

pyramid is on the axis of the surface, at a distance from the base

equal to one-third of the altitude.

Proof. Consider the pyramid to be cut by planes parallel to

the base and infinitesimal distances apart. The centroid of each

infinitesimal area intercepted between two succeeding planes is on

the axis, therefore the centroid of the total area is on the axis.

The centroid of each of the triangular faces is in a plane distant

one-third of the altitude from the base. Hence the centroid of the

entire slant area is at the intersection of the axis with this plane.

Since the surface of a cone may be considered as the limit of the

surface of a pyramid, the number of whose sides is increased to

infinity, the same proposition holds true for a cone.

Oblique Prism. The centroid of an oblique prism with parallel

bases is at the middle point of its axis.

Proof. Consider the prism to be cut into elementary plates

parallel to the base. The centroid of each plate approaches

coincidence with the centroid of its area as its thickness ap-

proaches zero. The straight line joining these centroids is the

axis of the prism by definition, hence the centroid of the prism is

on its axis. Again, consider the prism to be made up of elementary
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rods parallel to the axis. The centroid of each rod is at its middle

point, hence the centroid of the prism is in the plane passed through

these middle points of the elementary rods parallel to the base.

Oblique Pyramid or Cone. The centroid of an obhque pyramid

or cone is on its axis.

Proof. Consider the pyramid or cone to be cut into elementary

plates parallel to the base. The centroid of each plate approaches

coincidence with the centroid of its area as its thickness ap-

proaches zero. The surface of each plate is an area similar to the

area of the base and its centroid is at a corresponding point in

its area, hence on the axis. . Therefore, since the centroids of all

the elementary plates lie upon the axis, the centroid of the entire

pjTamid or cone is on the axis.

49. Centroids by Integration. Lines, Plane Surfaces and

Solids. If a solid, surface or line be divided into its infinitesimal

parts, the principle of moments. Art. 26, may be stated as follows:

For solid of volume V,

Vx = xi dVi + Xi dVi + xs dVi +, etc., = / xdV;

Vy = Jy dV; Jv^ = fz dV. (1)

For surface of area A,

Ax =
I
xdA; Ay =

I
ydA; Az = j zdA. (2)

For line of length I,

Ix = j xdl; Ty = j ydl; E = \ zdl. (3)

These expressions may be used when any given solid, surface or

line cannot be divided into finite component parts whose centroids

are known, but is of such form that the differential expression for

the moment can be integrated.

^ EXAMPLE 1.

C'-^^>;;::i3r Locate the centroid of a circular arc.

^^s^^ ^\ Solution:— By symmetry tlie centroid is on the

h-^ \\c~^ ^"S OC, Fig. 120, soy =0. To determine x, use

^\^ ; expression (3).

A^^-— =>y -

\^/^ tx = I xdl.

FiQ. 120 I =ra; X = rcosS; dl =rdS.
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*/ a
r' cos e dd.

raS = r' sin Sn
rax = 2r' sin -

- 2r . a
X = — sin t;-a 2

For a = 360°, sin | = sin 180° = 0.

For a = 180°, sin % = sin 90° = 1.

For a = 90°, sin | = sin 46° = 0.707.

X = 0.

a; = — = 0.637 u

X =0.707— - 0.901 r.

EXAMPLE 2.

Locate the centroid of the sector of a circle.

Solution:— Let the X axis bisect the angle of the sector. Fig. 121. Then

^ =0.

To determine x, use expression (2).

Ax =
I
xdA.

A = iT"a; dA = pdpdB; x = pcoa$.

.Jo J a
cos 6 dp dS.

Fig. 121
_ 4r . a
a; = :=- sin -^oa Z

EXAMPLE 3.

Locate the centroid of the area of a quadrant with

respect to the limiting radius.

8r
Solution:— By Example 2, OA = =— sin 45° See Fig.

122.

x = BA =0A8m 45°.

4r

Fig. 122

EXAMPLE 4.

Locate the centroid of a pyramid or cone.

Solution: — By Art. 48 the centroid is on the axis, so it remains to deter-

mine its distance from a plane through the vertex parallel to the base. Let the
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pyramid or cone be placed with its vertex at the origin 0, Fig. 123, and its

base MN normal to the X axis. Let A be the area of the base and let a be the

area of any cross section parallel to the base at

distance x from the vertex. Use expression (3).

Vx = JxdV.

<- f? ->l

Fig. 123

By similar triangles,

F=^; dV = adx.

-=- X = \ xa dx.

b

B
Also by the geometry of similar areas,

a _ ¥ ^1^
A~ B^~ h''

Then

x' dx.
Ah- _ A

f'
3 "^ h?Jo

- 3.
x = -^h.

The distance of the centroid from the base is 7 h.

EXAMPLE 6.

Locate the centroid of a hemisphere.

Solution: — Let the axes be placed as shown in Fig. 124. By sym-

metry ^ = and i = 0. To determine x, use expression (1).

Vi = jxdV.

= volume (

jrr'5 = I x-iry'dx.

= r2 - x'.

=
I

r^xdx —
I

x^dx.

V = -^irr'; dV = volume of slice AB = iry'^dx.
o

2

3

2 ,-
^r'x

2 y. ^

3''^=2-T
3

;
— f
8

Fig. 124

Problem 1. Determine by integration the distance of the centroid of an

arc of 90° from the radius at its end.
Ans. —
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Problem 2. Solve Example 2 above by using the elementary sector for dA.
Problem 3. In Example 2 above, use dA = pa dp as

shown by the shaded part in Fig. 125, and solve.

Problem 4. Determine by integration the dis-

tance of the centroid of a quadrant from the limiting

radius.

Problem 5. Locate the centroid of a parabolic seg-

ment of altitude a. The equation of the parabola is

y' = i mx. Ans. x = \ a.

Problem 6. Show by integration that the centroid

of a triangle is distant one-third of the altitude from

the base.
p^^^ j^25

50. Centroids of Surfaces and Solids of Revolution. The
centroid of a surface of revolution generated by th.e rotation of a

line about an axis in its plane is on

the axis. In determining its posi-

tion on the axis, the solution may
be simphfied by using for dA the

area generated by the length ds of

the generating line as shown by the

shaded part in the two views in

Fig. 126.

The centroid of a solid of revolution generated by the rota-

tion of an area about an axis in its plane is on the axis. In

determining its position on the axis, the solution may be sim-

plified by using as dV the volume generated by the element

dA of the generating area.

EXAMPLE 1.

Locate the centroid of a hemispherical surface.

Solution:— Let the axes be placed as shown in Fig. 127. By symmetry

y = and z = 0.

Ax = { X dA.

A = 2Trr2; dA = 'Zicyds; x = rooaO;

y = r sin 6; ds = rdB.

Fig. 126

2?rr'-X = I

r .
-1^

2 -nr' cos BsmBdS.

Fig. 127
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EXAMPLE 2.

Locate the centroid of a spherical segment.

Solution:— Let the axes be placed as shown in Fig. 128. By symmetry
= and 2=0.

Vx = jx dV.

dV = vy^ dx; V = i iry'dx; x = rcoaS;

dx = —rsinddS; y = rsinfl.

»^0
X I Trr^ sin^ 6 d$ £ irr' COS e sin' 6 dS.

- 3
x = -^r

2 — 3 cos ^ + cos' ^

Fig. 128

Problem 1. Show by integration that the centroid of the curved surface

of a cone is distant one-third of the altitude from the base.

Problem 2. Locate the centroid of the frustum of a cone which has dimen-
sions as shown in Fig. 129. (Consider the frustum as generated by the

revolution of the shaded trapezoid about the X axis.) Ans. x — 5.9 in.

51. Theorems of Pappus and Guldinus.

y I. The area S of the surface generated by

any plane curve revolved about a non-intersect-

ing axis in its plane is equal to the product of

the length of the curve and the length of the path
' traced by the centroid of the curve.

Let I be the length of the curve as shown
in Fig. 130.

Fig. 130
z,- = /ydl.
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^1^°
S = 2.fydl.

By eliminating / ydl,

S = 2-wyl.

II. The volume V of the solid of revolution generated by a plane

area revolved about a non-intersecting axis in its plane is equal to

the product of the area and the length of

the path traced by the centroid of the

area.

Let A, Fig. 131, be the generating

area.

Ay = JydA. ^^^^^

The volume of the ring generated by the rotation of the differ-

ential area dA is dV and is equal to the product of the length of

the ring and its cross section, 2 wy dA.

Total volume V = 2t
f
ydA.

By eliminating I ydA,

V = 2-KyA.

Problem 1. Determine the area of a circle by means of Theorem I.

Problem 2. Determine the curved area and the volume of a cone with
height h, radius of base r and slant height I.

Ans. Area = ini. Vol. = = 7rr%.
o

ftoblem 3. Determine the curved area and the volume of a cylinder with

height h and radius of base r.

4
Problem 4. Given the volume of a sphere = ^ -rfi, show that the centroid

3

of a semicircle is tt' from the diameter.
<5X

52. Center of Gravity of Composite Body. If a body is com-

posed of several simple parts whose centers of gravity are known,

the principle of Art. 26 may be applied.

The moment of a body with respect to a plane is equal to the sum

of the moments of the several parts with respect to the same plane.

Wx = WiXi + W2X2 + w^3 +, etc.

Similar propositions hold true for y and i. If the body was origi-

nally of simple form with one or more simple parts taken away, a



76 APPLIED MECHANICS [Chap, iv

modification of the preceding rule applies. The equation above

may be written

WiXi = Wx — W2X2 — W3X3 — , etc.

That is, the moment of a part of a body with respect to a plane is

equal to the moment of the whole body minus the moment of the parts

taken away.

EXAMPLE 1.

Locate the center of gravity of a wire 12 inches long, bent as showii in

Fig. 132.

Solution: — The weight is proportional to the length.

12x = 3X0 + 4X2 + 5X 5.25.

X = 2.85 in.

12^ = 3X1.5 + 4X0 + 5X 2.165.

y = 1.28 in.

4"

-IZ"- -^

Fig. 132 Fig. 133

EXAMPLE 2.

Locate the center of gravity of the plate shown in Fig. 133 with respect to

the center of the hole at 0.

Solution: — By symmetry, ^ = 0. Total original area = 60.56 sq. in.

Area of hole = 3.14 sq. in. Remaining area = 57.42 sq. in.

57.425 = 60.56 X 6 - 3.14 X 0.

X = 6.34 in.

Problem 1. Solve for x, y and i of the wire shown in Fig. 132 if the 3-inch

part of the wire is bent forward at right angles to the position shown.

Am. X = 2.85 in. y = 0.90 in. i = 0.38 in.

Problem 2. Locate the centroid of the area shown in Fig. 134.

Ans. X = 3.58 in. ^ = —4.07 in.

H-?'
"T-

#-->(/>

- CM ~

Fig. 134 Fig. 135

Problem 3. Locate the center of gravity of the gear journal shown in

Fig. 135. Ans. x = 5.425 in.
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53. Centroid of Irregular Plane Area. The centroid of any

irregular plane area may be determined graphically. Consider the

standard T-rail section, Fig. 136.

By symmetry, ^ = 0; ^ is to be

determined. Only one-half of the

area need be considered, that to

the right of OY. Draw the axes

EF and CD perpendicular to the

Y axis and any distance j/i apart.

Locate as many controlling points

on the bounding line FD as nec-

essary. M and N are two such

points. Determine the points M',

N', etc., such that x' = ~x. Connect all of the points so obtained

by a smooth curve. Let A be the half area of the rail and A' the

shaded area between the Y axis and the curve M'N'.

Ay =
J ydA.

dA = X dy (horizontal strip).

So Ay =
I
xy dy.

From the relation above, xy = x'yi.

By the substitution of this in the preceding equation,

Ay = yij x' dy = yiA'.

Then
A'

•2/1-

Areas should be measured with a planimeter.

Problem 1. Check the graphical method by solving for the location of the

centroid of a rectangle: (1) using h for yi; (2) using 2 h for yi.

54. Center of Gravity by Experiment. The center of gravity

of an irregular body may be determined by experiment. If the

body is suspended freely, two intersecting vertical planes through

the center of suspension may be marked on the body. Each of

these planes contains the center of gravity, therefore it is in their

line of intersection. If the body is then suspended in some other

position, the intersection of any other vertical plane through the



78 APPLIED MECHANICS [Chap, iv

center of support with the line of intersection of the other two

planes determines the center of gravity.

If a body is of such form that it can easily be balanced across a

knife edge, the position of the center of gravity may be determined

readily. The body should be balanced perfectly in some position

and the line of the supporting knife edge marked. The body

should then be rotated and balanced and another line of support

marked. The center of gravity is vertically above the intersection

of the two lines.

Problem 1.

Fig. 137.

GENERAL PROBLEMS.

Locate the centroid of the cross section of the T-bar shown in

Ans. y = 1.125 in.

y...

I

I

"TT

W- .,8-

Fig. 137

A±A

trad.
krad;—ix

Ca)
-A

Fig. 138

Problem 2. Neglecting the fillet and rounded corners, locate the centroid

of the angle section shown in Fig. 138. Ans. x = 2.47 in. y = 1.47 in.

Problem 3. Consider the fillet and rounded corners of the angle section

of Problem 2 and solve for y accurately, (e.g. of shaded area, Fig. 138(b), is

0.22 r from tangent.) Ans. y = 1.46 in.

i"

JO-

^ /»' —-^

Fig. 139

Problem 4. Locate the centroid of the channel section shown in Fig. 139.

Ans. y = 0.845 in.
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Problem 5. Locate the center of gravity of the governor ball and rod in the

position shown in Fig. 140. The rod is steel and the ball is cast iron.

Am. X = 10.62 in. y = -10.62 in.

Fig. 140 Fig. 141

Problem 6. Locate the center of gravity of the trapezoidal shaped piece

of sheet iron shown in Fig. 141. Ans. x = 2.44 in. ^ = 2.22 in.

Problem 7. If the triangular ends ABF and CED, Fig. 141, are bent

forward at right angles to the remainder, determine x, y and z.

Ans. X = 2.67 in. y = 2.22 in. z = 0.37 in.

Problem 8. A controller magnet has dimensions as shown in Fig. 142.

Locate the center of gravity. Am. y = 2.924 in.

'<'Tn^

1. Y /

Fig. 142 Fig. 143

Problem 9. An endless wire is bent into the form of an arc of 90° and its

chord. Locate the center of gravity. Ans. 0.808 r from center.

Problem 10. What is the distance from the chord of an arc of 60° to the

centroid of the arc? Ans. 0.0885 r.

Problem 11. A cylinder 6 inches in diameter and 8 inches high has a

cylindrical hole 2 inches in diameter and 4 inches deep bored into its top.

Fig. 143 shows a cross section through the axis of the cylinder and the axis of

the cylindrical hole. The bottom of the hole is conical, each element being at

an angle of 45° with the axis. Locate the center of gravity.

Am. X = 0.064 in. y = 3.89 in.

Problem 12. A 6-inch cube has cylindrical holes 1 inch in diameter and

2 inches deep drilled in the centers of the top, front and right-hand faces.

Locate the center of gravity. Am. x = —0.0149 in.
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Problem 13. A telephone pole 14 inches in diameter at the bottom and

6 inches at the top is 30 feet long and tapers uniformly. It is loaded upon a

wagon with 4 feet of the butt end projecting in front of the front axle. Where

should the rear axle be placed so as to carry the same weight as the front axle?

Ans. 11.6 ft. from the top end.

Problem 14. A cast iron flywheel 3 feet in diameter has a rim with cross

section as shown in Fig. 144. What is the weight of the rim? Ans. 280 lbs.

^—.--e
Face

Fig. 144

Face
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Problem 18. Tne cross section of the end chord of a bridge is shown in

Fig. 148. Determine the position of the centroidal axis parallel to the plate.

The area of one channel is 9.9 sq. in. Ans. y = 10.7 in.

Problem 19. Solve Problem 18, using a 12-in. by 1-in. plate and two
10-in. 20-lb. channels. The area of one channel is 5.88 sq. in.

Ans. y = 7.78 in.

y

7rn
V

6- ->1

Fig. 149

Problem 20. Locate the centroid of the section of a bulb beam shown in

Fig. 149. Ans. x = 2.35 in.



CHAPTER V.

FRICTION.

55. Static and Kinetic Friction. If a block rests upon a

horizontal supporting surface, the weight of the block and the

resistance of the surface are the two forces acting upon the block.

If these distributed forces are considered to be acting at their

centroids, they may be represented by W and N, Fig. 150. If a

small horizontal force P is applied to the block and it is still at rest,

the force to balance P is the resistance of the supporting plane

parallel to P, tangential to the surface, as shown in Fig. 151. This

resistance is called friction and is denoted by F.

H

Fig. 150

If the force P is increased gradually, it will reach a certain value

which the friction F can no longer balance and the block will move.

While the block is at rest the friction is called static friction. The

highest value of the static friction, that when motion is just im-

pending, is called the limiting friction and will be denoted by F'.

After motion begins the friction decreases and is called kinetic

friction, or friction of motion. Friction is always a resisting force

and opposes the motion or the tendency to move.

Adhesion must not be confused with friction. Adhesion is the

attraction between two surfaces in contact. It depends upon the

area in contact and is independent of the pressure. Friction is

independent of the area and varies as the pressure. For nearly

all problems in engineering, adhesion may be neglected.

If the two surfaces in contact are hard and well polished, the

frictional resistance becomes very small but never reaches zero.

For a perfectly smooth surface, then, the resistance would always
82



Art. 56] FRICTION 83

be normal to the surface. In many problems the friction is very

small compared with the other forces acting and so may be neg-

lected in the solution without appreciable error.

56. Coefficient of Friction. The ratio of the limiting friction

F' to the normal pressure N is called the coefficient of static friction,

and is denoted by /. In symbols,

N'f =

The frictional force F and the normal reaction N acting on the

block in Fig. 152(a) may be combined into their resultant R. It

is evident that the resultant R must always lean from the normal

in the direction to oppose motion or the tendency to move.

w

(a)

Fig. 152

If is the angle between the resultant reaction and the normal,

The maximum value
F

it is plain from Fig. 152(a) that -^ = tan 0.

of i> corresponding to F' is denoted by <^' and is called the angle of

friction. It is evident that / = tan <^'.

If the surface upon which the block rests is inchned at an angle

6 with the horizontal and no force but the pull of gravity and the

reaction of the surface acts upon the block, the angle at which

slipping is impending is 6', the angle of repose. In Fig. 152(b), R
is equal and opposite to W and acts at the angle 0' with the normal,

since slipping impends. From the geometry of the figure, angle

0' = angle </.'.

If the value of the angle <t>' for two given surfaces is known and

slipping is impending, the resultant reaction becomes known in

direction.

The coefficient of kinetic friction is the ratio of the kinetic friction

F to the normal pressure N and is also denoted by /.

J
AT
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EXAMPLE.

A block weighing 500 lbs. rests upon two wedges which in turn rest upon a

horizontal plane surface. If the angle of the wedges is 10° and the coefficient

of friction is 0.30, what are the forces P, P, required to force the wedges under

the block?

H^W P (e)

Fig. 153

Gra'phic Solviion:— The angle <^' = tan"! 0.30 = 16° 40'. Fig. 153(b)

shows the block as a free body. Since slipping is impending, the reactions Ri

and Ri are acting at the angle <t>'
= 16° 40' with the normal to the surface of

contact, or at 26° 40' with the vertical. The force triangle is shown in Fig.

153(c), from which Ri and & scale 280 lbs.

In Fig. 153(d) is shown the left wedge as a free body, with the known force

Rl equal and opposite to Ri acting upon it. The unknown forces are P,

horizontal, and Rs acting to oppose motion at the angle ip' = 16° 40' with the

normal. The force triangle is shown in Fig. 153(e), from which P scales

200 lbs. and Ra scales 260 lbs.

Algebraic Solution: — With the 500-lb. weight, Fig. 153(b), as the free body,

equation SFi = gives

Ri sin 26° 40' = ft sin 26° 40'.

Ri = ft.

Equation XFy = gives

2 ft cos 26° 40' = 500.

ft = 280 lbs.

With the left wedge. Fig. 153(d), as the free body, SFj, = gives

280 cos 26° 40' = ft cos 16° 40'.

ft = 261 lbs.

Equation SFx = gives

P = 280 sin 26° 40' + 261 sin 16° 40'.

P = 126 + 75 = 201 lbs.
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Problem 1. In the example above, determine the horizontal force neces-

sary to start the wedge out from under the block.

Ans. 104.1 lbs. in the reverse direction.

Problem 2. Solve Problem 1 if the coefiBcient of friction is reduced to 0.15

at all surfaces. Ans. 30.9 lbs.

57. Laws of Friction. The laws of friction for dry surfaces

were deduced chiefly from the experiments of Morin, Coulomb and

Westinghouse. These may be stated as follows:

1. Friction varies directly as the normal pressure.

2. Limiting static friction is slightly greater than kinetic

friction.

3. Ordinary changes of temperature affect friction only slightly.

4. At slow speeds, friction is independent of the speed. At
high speeds, friction decreases as the speed increases, probably

due to the fact that a film of air is drawn in and acts as a

lubricant.

5. Kinetic friction decreases with the time.

6. Friction is increased by a reversal of motion.

The laws for lubricated surfaces are decidedly different from

those for dry surfaces. For instance, friction is practically in-

dependent of the nature of the surfaces, due to the fact that the

chief friction is between the different layers of the lubricant.

Limiting static friction is much greater than kinetic friction, due

to the fact that while at rest the film of lubricant is pressed out

from between the surfaces. Ordinary changes of temperature

make a decided difference in the character of-many lubricants and

therefore affect the amount of friction greatly. Heavy normal

pressure tends to force out the lubricant and therefore increases

the coefficient of friction. As the lubrication becomes poor, the

laws approach those for dry surfaces.

58. Determination of the CoeflScient of Friction. The co-

efficient of static friction for two surfaces may be determined

experimentally by finding the pull P necessary to start a weight

W on a, horizontal plane, or by finding the angle of inchnation of

the plane at which motion is impending for the weight resting

upon it, as explained in Art. 56.

The coeflacient of kinetic friction may be determined by finding

the pull P necessary to keep a weight W moving uniformly on a

horizontal plane, or by finding the angle of inclination of the plane

at which the motion of the weight upon it is uniform.
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As would be expected, there are great variations in the values of

the coefficients so obtained. The following table gives the range

of values for the coefficient of static friction for a few materials.

The corresponding coefficients of kinetic friction are 20 per cent

to 40 per cent less than the values for static friction.

SUBSTANCES
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To determine the side of the friction circle at which the reaction

is tangent, it is necessary to note the direction of pressure and the

point of contact of the axle with the bearing. The reaction is

tangent to the friction circle on that side toward which the axle

rolls as it rotates.

Another rule is that friction, being a resistance, always shortens

the lever arm of the working force and lengthens the lever arm of

the resisting force.

2 diam.
Z diam.

3 diam'.,

Fig. 155

Problem 1. Fig. 155 shows a simple steam hoist. Solve for the value of

the force P necessary for uniform motion in the position shown, (1) if friction

is neglected; (2) if friction is considered and / = 0.15 for all moving surfaces,

Am. (1) P = 1388 lbs. (2) P = 1500 lbs.

Fig. 156

Problem 2. Fig. 156 shows the standard compensator for interlocking

signal systems in mean temperature position. Points A and B are fixed. AU
pins are 1 inch in diameter. Use / = 0.10 and

determine the value of Q for P = 50 lbs.

Am. Q = 49 Iba.

60. Least Pull and Cone of Friction.

If the force P, Fig. 157(a), acts hori-

zontally on a body of weight W, and

motion is impending, the force diagram

is as shown in Fig. 157(b). If W and <^'

are known, R and P can be determined, since for equilibrium the

force polygon must close. If the force P is acting upward at the
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^1^

angle 6 with the horizontal, as in Fig. 158(a), N is decreased and

therefore F' is decreased. Their ratio and the angle <j)' remain

constant. From the force diagram,

Fig. 158(b), it is plain that with W
constant and the direction of R con-

stant, the minimum force P to close

the force triangle must be acting at

an angle of 90° with R. So with angle

9 varying the least pull P to start

the block is given when d = (t>'.

This result may also be obtained by means of the calculus

method.

If P is acting downward at the angle 9 with the horizontal, N and

F' are increased, as will be seen in Fig. 159(a) and (b). If the

body is free to move in any direction, the cone whose vertex is at

A and whose axis is normal to the surface at A with angle of 2 <^'

is called the cone of friction. If the resultant of P and W falls

inside the cone of friction, it is evident that the reaction of the

supporting plane falls within the angle DAE, that is, at an angle <j)

with the normal which is less than 0', as shown in Fig. 159(c).

The required frictional resistance F is less than the limiting value

F' = N tan </>', hence the plane will hold the body in equilibrium

no matter how much P is increased.

Problem 1. A body weighing 100 lbs. rests upon a plane surface inclined

at an angle of 10° with the horizontal as shown in Fig. 160.

If / = 0.25, what is the friction under the body? What
force P parallel to the plane will be necessary to start

the body down the plane? What force P parallel to

the plane will be necessary to start the body up the

plane?
Ans. F = 17.4 lbs. P = 7.2 lbs. down.

Fig. 160

P = 42 lbs. up.
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Problem 2. What is the least pull P and its angle with the plane, to

start the body of Problem 1 down the plane? Same for motion up the

plane? Ans. 7 lbs. at 14° with plane. 40.7 lbs. at 14° with plane.

Problem 3. In Problem 1, how many degrees each side of the vertical is

the angle for which no motion is possible, no matter how large a downward
force P is appUed? Ans. 4° above; 24° below.

61. Rolling Resistance. If the curved surface of a perfect

cylinder touches a perfect plane, they are in cdntact only along a

line. If a loaded wheel rests upon a rail or roadway, a deformation

is caused so that there is an area of contact. If a horizontal pull

P, Fig. 161, is applied to the axle to move the wheel forward

uniformly, the resultant reaction R of the supporting surface acts

at a point B in front of the vertical radius. Let the horizontal

distance AB be called a. If motion is uniform and if the indenta-

tion is small, equation Silfg = gives, approximately,

Pr =

P =

Wa.

r

If the load W is appUed at the circumference of the wheel or

roller, as in Fig. 162, and a force P is applied to move both load

and roller forward uniformly, a similar relation is obtained. Let

a be the distance from the point of appUcation of the resultant to

the vertical radius at the bottom of the roller and ai that at the

top. Then the equation ^Mb = gives

2Pr = W{ai+ a).

„ Wa
Ifai as before.
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If the weightW is carried by two or more rollers, Ri+ R2+, etc.

= W (Approx.). Equation IIF^^ = gives

P = (Ri+R2+, etc.) sin <^,

if 4> is the angle between R and the vertical. Then

P = T^ sin 0.

,ai + a

If fli P =

W-

Wa
2r

Experiments appear to show that the distance a is practically

constant for the same materials, both for varying loads and varying

radii, within reasonable limits. It is called the coefficient of rolling

friction, or, preferably, the coefficient of rolling resistance. The
experiments of Coulomb, Weisbach and Pambour give the follow-

ing values for a in inches.

WHEEL
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large enough so that slipping of the wheel is impending. F' is the

limiting static friction between the rail and the wheel, so R acts

at the angle
<i>' with the normal. As discussed in Art. 56, 4>' is

F'
the angle,whose tangent is -tt = /. (The coefficient of rolling re-

sistance is comparatively small, and may be neglected.)

Fig. 163

At B, kinetic friction is acting, so Fi = JiN\, and Ri acts at the

angle 0i' with the normal. These two forces meet at C, hence the

reaction of the bearing on the axle must also pass through C. If

the axle friction is neglected, reaction R^ passes through the center

of the axle at 0. If axle friction is considered, the reaction passes

tangent to the friction circle at 0. The graphic solution for all

of the unknown forces is shown in Fig. 163(b). N, <(>' and <^i' are

supposed to be known.

The further discussion of the friction of brakes on car wheels and

of friction dynamometers will be given in Chapter XI, Work and

Energy.

Fig. 164

Problem 1. Fig. 164 shows a car on an inclined track, the weight of 400

lbs. being carried by the two wheels on one side. Consider kinetic / = 0.3

(brake on wheel) and static/ = 0.4 (wheel on rail). Neglect rolling resistance
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and axle friction and determine the two equal and opposite normal brake shoe

pressures, N, N, to allow uniform motion of the car down the plane.

Ans. 173 lbs.

63. Friction on Pivots. Flat-end Pivot. A flat-end pivot and

its bearing are originally perfect planes, but they cannot remain

so after wear begins. The unit pressure at first is constant over

the whole surface but since the distance traveled over by any

elementary area per revolution varies with its radial distance, the

wear is greater at the outside. This reduces the pressure at the

outside and increases it toward the middle. It is evident that after

the pivot has run until conditions are uniform, the wear parallel

to the axis on the pivot and bearing must be the same at all points.

The wear on any unit area varies both with the distance traveled

(or its radial distance) and with the normal pressure. Therefore,

in order that the wear be uniform over the whole area, it is neces-

sary that the product of the normal pressure on any unit area and

the radial distance of the area shall be constant. If p is the vari-

able unit pressure and p the distance of the unit area from the

center, pp must be constant, or

pp =K.

Fig. 165 FiQ. 166

Fig. 165 represents a solid flat-end pivot and Fig. 166 a hollow

flat-end pivot. In either case, dA = pdp dd. The normal pressure

on dA is pp dp dd = K dp dd. The frictional force on dA is fK dp dd,

f being the coeSicient of kinetic friction. The moment of this

frictional force on dA about the center is dM = fKp dp dO. For the

solid pivot of radius r, the total moment about the center is

M=fK
2ir

pdpdB = fKrhr.
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As given above, the normal pressure on dA is K dp dd. The total

normal pressure is

K

From this,

n2w dpdd = K2Trr.

PK =
2irr

By substitution of this value in the expression for the moment
above,

This is seen to be a moment equivalent to the total frictional force

fP acting at the mean radius ^ •

For the hollow pivot with inner radius n and outer radius ra, the

total moment of the frictional force about the center is

M =f^r£ pdpdd =fKTr{r2^-ri^).

The normal pressure on dA is K dp d9. The total normal pressure

is

I dpdd = K2w(ri-ri).
r, Jo

K =From this, ^•. — „ , ,

2 iriXi — n)

By substitution of this value in the expression for the moment.

As before, this is seen to be a moment equiv-

alent to the total frictional force fP acting at

the mean radius (n^)- £

Fig. 167

The collar bearing, shown in Fig. 167, is the

same as the hollow pivot. It has the advantage

that it can be placed at any point along the

shaft and also that several can be used on one shaft in order to

obtain any desired amount of bearing area.

Conical Pivot. Fig. 168 represents a conical pivot under axial

load P- Let dP be the load on area dA = pdp dd, and let dN
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be the normal pressure of the bearing on the slant area corre-

sponding. Then since HFy = 0,

or

dN sin a =

dN =

dP,

dP
sin a

The friction caused by the normal pressure

fdP
dN is / dN = -.— , and its moment about the

sm a

Fig. 168 center is dM fpdP
sin a'

If p is the variable

unit pressure on the cross-sectional area, since the same conditions

hold true as in the flat-end pivot,

dP = ppdpd9 = Kdp dB.

The total moment of the frictional forces about the center is

J sm a sm a Jo Jo

P
sma

As in the flat-end pivot, K = ^— , so
2irr

M = fPr

2 sin a

Since -. = I, the length of an element of the cone of contact, the
sm a

expression for the moment becomes

M=fPl-

It will be seen that the moment of the frictional force on a

conical pivot is the same as that on a flat-end pivot whose radius is

equal to the length of the element of the cone of contact.

Fig. 169

64. Friction of Belts. If the belt shown in Fig. 169(a) is

turning the pulley against some resistance, the tension T^ on the
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driving side is greater than the tension Ti on the slack side.

Consider a piece of the belt of ds length as a free body, Fig.

169(b). Let dP be the normal pressure of the pulley on the belt

on ds length. Since the free body is in equilibrium under the

action of the forces shown, equation UMo = gives

rdF -rdT = 0.

dF = dT.

By sunaming forces in the radial direction,

dP = Tsin ^ + (r + dT) sin ^ = 2 Tsin ^+ d^sin §•

d9
The term dT sin ^ may be neglected since it is a differential of a

higher order and sin — may be replaced by -^•

Then dP =TdB.

When slipping impends,
dF =jdP-

Therefore dT =fdP -=fT dd,

or / ^=fl^de.r;3"i'
T

By integration, log^ y = f^-

In terms of common logarithms, this becomes

logio
J^

= 0.4343/^.

In the exponential form it becomes

—
' = e'»

The angle ^ is in radians. If the belt is slipping, the same

relations hold true, / being the coefficient of kinetic friction.

These relations are not true if slipping is neither occurring nor

impending.

Problem 1. A belt runs between two pulleys of equal diameter for which

/ = 0.5. If the tension on the slack side of the belt is 100 lbs., what tension

can be put upon the taut side before slipping is impending? Ans. 481 lbs.
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Problem 2. A windlass has 2J turns of rope on the drum. / = 0.4 between

the rope and the drum. If the load being pulled is 10,000 lbs., what tension

must be exerted at the other end to prevent slipping? Ans. 18.7 lbs.

Problem 3. The tension in the free rope of a block and tackle is 300 lbs.

It is held by being passed around a post for which / = 0.3. How many turns

are required to hold it if the tension at the slack end is 5 lbs.?

Ans. 2.17 turns.

65. Summary of Principles of Friction. In the solution of

problems involving friction, several principles are to be noted

particularly.

(1) If friction is neglected, reactions are always normal to the

surfaces.

(2) If the free body is in motion or tends to move, the friction

of adjoining surfaces upon the free body opposes its motion.

(3) If the free body is at rest and the adjoining surfaces move
or tend to move over it, the friction upon the free body is in the

direction of the moving surface.

(4) The coefficient of static friction is used to determine the

friction only when the body is at rest, with slipping impending.

When slipping is not impending, static conditions determine the

friction.

GENERAL PROBLEMS.

Problem 1. If the static coefficient of friction for cast iron wheels on steel

rails is 0.20, what is the limiting slope down which cars can be run with uni-

form velocity? Ans. 11° 20'.

Problem 2. If the kinetic coefficient of friction tor cast iron wheels on

steel rails is 0.15 and the brakes are tightened so that the wheels skid, what is

the unbalanced force down the limiting slope of Problem 1 for a car weighing

100,000 lbs.? Ans. 4940 lbs.

Problem 3. Fig. 170 shows a wedge of 20° angle which is forced under a

weight of 200 lbs. held against a stop block A. li <t>' for all surfaces is 15°,

determine the force P necessary to start the wedge under the block.

Ans. 239 lbs.
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Problem 4. Determine the value of the force P of Fig. 170 necessary for

uniform motion of the wedge to the left. Ans. —35 lbs.

FiQ. 170 Fig. 171

Problem 5. In Fig. 171, ^ is a 20-lb. body on a 30° plane and B is a 60-lb.

body on a 10° plane. The two are connected by a cord over a pulley at C.

Will the system move if / = 3 for both bodies? Determine Fi, F^ and T.

Ans. Fi = 5.77 lbs. Fi = 12.92 lbs. T = 4.23 lbs.

Problem 6. If / = 0.3 for the block shown in Pig. 172 and e = ,20°, what
is the pressure P necessary to cause motion? Ans. 50 lbs.

M 3' < -

lOlhs. f'

Fig. 172

-}0"-A

Fig. 173

Problem 7. If / = 0.2 for the hanger AB which slides up and down on the

post MN, as shown in Fig. 173, determine how close to the post the load P can

be placed without causing the hanger to sUde down. Ans. 3.5 inches.

Problem 8. Use the smallest coefficient of friction for wood on wood as

given in the table and determine the flattest slope a chute for unloading boxes

may have for uniform motion. Am. 16° 40'.

Problem 9. Determine the constant horizontal force necessary to move a

block of ice weighing 100 lbs. uniformly up a wooden chute at an angle of 15°

with the horizontal. Use / = 0.05. Ans. 32.2 lbs.

Problem 10. A plank 12 ft. long rests in a horizontal position upon two

inclined planes, one at 60°, the other at 45° with the horizontal. If (^' = 20°

for each surface, determine the limits of the position where a load can be hung

without causing motion. Neglect the weight of the plank.

Ans. 3.3 ft. from 60° plane. 1 ft. from 45° plane.

Problem 11. If the coefficient of roUing resistance a = 0.01 inch for the

wheels of a freight car on steel rails, and / = 0.03 for axle friction, determine

the horizontal pull necessary to keep a car weighing 100,000 lbs. in uniform

motion on a level track. The wheels are 33 inches in diameter and the axles

are 4 inches in diameter. Determine also the steepest grade on which the

car would not start. Ans. 424 lbs. 0.424 per cent.
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Problem 12. A white oak beam weighing 200 lbs. carries a load of 2400

lbs. and rests on elm rollers 6 inches in diameter. The rollers rest in turn on a

horizontal oak track. What horizontal puU P is necessary to move the beam
and its load? Arts. 28.4 lbs.

Problem 13. A rectangular block of wood 1 ft. by 1 ft. by 2 ft., weighing 80

lbs., stands on end on a smooth floor. The coefficient of friction/ = 0.20. If

the block is acted upon by a horizontal force applied at the top of the block till

motion ensues, wiU the block shde or tip? What is the amount of the force?

Ans. 16 lbs.

Problem 14. If the same block as in Problem 13 is placed on end on a

plank which is gradually raised at one end, what is the least coefficient of

friction which will make the block tip before shding? Ans. f = 0.5.

Problem 16. Find the least puU necessary to drag a stone weighing 250 lbs.

along a horizontal floor for which / = 0.6. Ans. 129 lbs.

Problem 16. A weight of 10,000 lbs. is being lowered into the hold of a

vessel. The sustaining rope passes around a spar for which / = 0.2. How
many turns around the spar must the rope have for uniform motion if the

resistance at the other end of the rope is not to exceed 120 lbs.7

Ans. 3.52 turns.

Problem 17. A rope has 1| turns around the drum of a windlass. If

/ = 0.4 and the pull necessary to keep the rope from slipping is 40 lbs., what
pull is being exerted at the other end of the rope? Ans. 1730 lbs.



CHAPTER VI.

MOMENT OF INERTIA,

66. Definition of Moment of Inertia of an Area. Integral

quantities in tlie form / x^ dA occur in the study of mechanics of

materials. In the expression / x^ dA, dA denotes any differential

area, each part of which is the same distance x from the axis of

reference, called the inertia axis. The sum of these differential

areas equals the total area A. The quantity I x^dA, integrated

between the proper limits, is called the Moment of Inertia* of the

area A.

Defined in words, the Moment of Inertia of a plane area with

respect to any axis is the sum of the products of each elementary

area and the square of its distance from the inertia axis. Moment
of inertia is denoted by I. If it is necessary to specify the axis of

reference (inertia axis), a subscript letter is used, as Ix, Ia, etc.

The only axes used are those in the plane of the area and those

* The terms, second moment of area, second moment of mass, etc., would be

preferable, but the term moment of inertia has been in use too long to be

changed. In the case of areas the term is entirely misleading, for since an area

has no inertia it can have no true moment of inertia.

The term was first used by Euler for second moments of mass, on account

of the analogy between rotary and translatory motion.

= acceleration (translatory).
Mass (or Inertia)

Moment of Force

J
r"dM (or Moment of Inertia)

= acceleration (rotary).

According to modem definition, however, inertia is not synonymous with

mass, but is only a property of matter, its amount being proportional to the

mass. For lack of a better name the same term was applied to the expression

/x''dA for areas.

99
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normal to it. The moment of inertia of an area with respect to an

axis normal to its plane is called the Polar Moment of Inertia.

The expression x^ dA is the product of an area and a distance

squared, hence the moment of inertia of an area is expressed in a

dimension of length raised to the fourth power. In numerical

computations the inch is commonly used as the unit length, and

moment of inertia is in units of "biquadratic inches," written

in*.

67. Radius of Gyration. It is sometimes convenient to ex-

press a moment of inertia of an area in terms of the area and the

square of a distance. Thus,

^fx" dA = ¥A.

The quantity "k" is called the radius of gyration, and is the

distance from the axis at which all the area could be considered as

located and the moment of inertia remain the same. Stated in

another way, k"^ is the mean value of x^ for equal differential areas.

As commonly determined.

fc v/|-

EXAMPLE 1.

Derive the expressions for the moment of inertia and radius of gyration of

a rectangle which has base 6 and altitude h, with respect to a centroidal axis

parallel to the base.

Solution:—

The limits of y are

Ix=S^-''dA.

dA=h dy. See Fig. 174.

h
;
and + So

+ "-

I

•c

jLdy h=f_iby^dy.

^.X
_ 6^3-1 + ,

Fig. 174 -fl-

12

h

bh'.

!)
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EXAMPLE 2.

Derive the expressions for the moment of inertia and radius of gyration of a

triangle which has base b and altitude h, with respect to its base.

A
Solution:—

By similar triangles,

= fy^dA.

b h

or u

The limits of y are and h. So

dA =u dy. See Fig. 175. ^
u _ h — y

b--^y.

Fig. 175

iy'dy-^^-^y'dy.

4 12
bh\

y A v;V6

EXAMPLE 3.

Derive the expressions for the moment of inertia and radius of gyration of

a circle of radius r with respect to a diameter.

f* d ->i Solution:— I^ = J^dA.

dA = pdpde. See Fig. 176.

2/ = p sin 6.

Fig. 176

= 7r j p^ dp
•'0

= iirr* or ^\i

r

2'=\/i=:

EXAMPLE 4.

Derive the expressions for the polar moment of inertia and radius of gyra-

tion of a circle of radius r with respect to an axis through its center.

Solution:— /o = \ p^dA.

dA = pdpde. See Fig. 176.

1 p'dpde
•'o

= lirf or -s^ird^.
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Problem 1. Derive the expressions for the moment of inertia and radius

of gyration of a rectangle with respect to its base.

1
Ans. I hh\

Problem 2. Derive the expressions for the moment of inertia and radius

of gyration of a triangle with respect to its centroidal axis parallel to its base.

Ans. / = ijs hh'.
do

k
h

'3V2
Problem 3. Derive the expressions for the moment of inertia and radius

of gyration of a triangle with respect to an axis through the vertex parallel to

the base. Ans. T = \ 6ft'.

Problem 4. Derive the expressions for the polar moment of inertia and

radius of gyration of a square with respect to an axis through its center.

Ans. I = i¥.
Problem 6. Derive the expressions for the moment of inertia and radius of

gyration of a sector of a circle with respect to its bounding radius.

r*0 r'sin29

68. Sign of Moment of Inertia. Since the squares of both

positive and negative quantities are positive and since areas are

always positive, it follows that moments of inertia are always

positive. In Fig. 177(a), Ix of the area M for which all of the

values of y are positive is the same as Ix of the symmetrical area

N for which all of the values of y are negative. Thus the moment
of inertia of each half of a circular area is the same with respect to

any diameter.

Fig. 177

The value of y does not depend upon the position of the area

along the X axis. For example, Ix may be computed separately

for the two triangles P and Q, Fig. 177(b), or the triangles may be

considered to be shifted until they touch and form the one triangle

P'Q' for which Ix may be computed with one operation.

69. Relation Between Moments of Inertia with Respect to

Two Parallel Axes in the Plane of the Area. If the moment of



Art. 69] MOMENT OF INERTIA 103

inertia of an area with respect to an axis other than a centroidal

axis is required, it may be obtained without integration if the

moment of inertia with respect to the parallel centroidal axis is

known. In Fig. 178 let Xo be a centroidal axis and Xi any other

axis parallel to it, in the plane of the area, at a distance d from the

centroidal axis.

Ix, = fyi'dA.

i/i2= {y + dy = y'' + 2yd + dK

Ix, = fifdA+2d fy dA + d? CdA.

Ix, = Ix„ + Ad^.

2d I ydA = because
f y dA =yA, and for the centroidal axis

^ = 0.

Stated in words the equation above is as follows. The moment

of inertia of an area with respect to any axis in its plane is equal to its

moment of inertia with respect to a parallel centroidal axis plus the

product of the area and the square of the distance between the axes.

This equation is commonly known as the Transfer Formula.

If both sides of the equation /x, = Ix, + Ad^ are divided by A,

it becomes

A ~ A ^'^

Hence Jcx^ = hx^ + d^

or A;2 = fc2 + d^^

Problem 1. Given I^^ for a rectangle = fj hV, derive the expression for

T with respect to the base. Ans. I - i bh^.

Problem 2. Determine the moment of inertia of a rectangle 20 in. by 1 in.

with respect to an axis in its plane parallel to the 20-inch side and 10 inches

from the centroidal axis. Ans. I = 2001.67 in.*.

Problem 3. Given I = jbh^ for a triangle with respect to an axis through

the vertex parallel to the base, derive the expression for / (1) with respect to

the base; (2) with respect to a centroidal axis parallel to the base.

Ans. (1) 7 = r^ bh\ (2) I = is bh\

Problem 4. Given 7 of a semicircle with respect to its bounding diameter,

derive the expression for 7^, with respect to a parallel centroidal axis.

4-^x. =
(i-<n;)'-'

= 0.11r*.

Problem 5. Derive the expression for 7 of a circle with respect to a tangent.

Ans. 7 = 1 Ttr*.
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70. Relation Between Moments of Inertia with Respect to

Three Rectangular Axes. Let Fig. 179 represent any plane area

and let Z be the polar axis through 0.

Then S'r'^ dA.

r2 = -r2x^ + r-

Fig. 179 = Cx^dA + Jy^dA.

Iz=lY+h

The polar moment of inertia of an area with respect to any axis

equals the sum of its moments of inertia with respect to any two rec-

tangular axes in the area intersecting the polar axis.

Ix =
Problem 1. Show that for a circle which has its center at the origin,

Iz-

Problem 2. Derive the expression for the polar moment of inertia of a
square with respect to an axis through one corner.

Problem 3. Prove that the moment of inertia of a square with respect to

any centroidal axis in its plane is a constant.

Problem 4. Derive the expression for the moment of inertia of a circle

with respect to a polar axis intersecting its circumference.

71. Relation Between Polar Moments of Inertia with Respect
to Parallel Axes. The relation between the polar moment of

inertia of an area with respect to a centroidal axis and that with

respect to any parallel axis is similar to that between moments of

inertia with respect to parallel axes in the plane of the area.

Let Xo and Yo, Fig. 180, be the centroidal

axes and X and Y any other parallel axes, all

of them being in the plane of the area. By
Art. 69,

and
Ix = Ix, + Adx\

ly = Iy, + Ad,\ FiQ. 180

Let Z be the axis through perpendicular to X and Y and let

Zo be the axis,through C perpendicular to Xo and Yq. By Art. 70,

Iz = Ix + Iy = Ix. + Iy, + A (d,2 + d,2)_
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Since

/x. + /f„ = /z., and d,^ + d,' = d\

The -polar moment of inertia of an area with respect to any axis is

equal to its polar moment of inertia with respect to the centroidal axis

plus the product of the area and the square of the distance between the

two axes.

Problem 1. Solve Problem 4 of Art. 70 by the method of this Article.

Problem 2. Derive the expression for the polar moment of inertia of a

square with respect to an axis bisecting a side. Ans. / = A b*.

72. Moment of Inertia of Composite Areas. The moment of

inertia of a composite area with respect to any axis equals the sum
of the moments of inertia of the separate parts with respect to the

same axis. For example, the moment of inertia of the trapezoid

ABCD, Fig. 181, with respect to the base AD is the sum of the

B
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Problem 4. A wooden box girder is made of four 2 in. by 10 in. planks as

shown in Fig. 183. Compute the moment of inertia of the cross section with

respect to axis 1-1. Ans. h-i = 1786.67 in.*.

Problem 5. Compute the moment of inertia of the cross section of half-

pipe shown in Fig. 184, with respect to its centroidal axis GG parallel to the

bounding diameter. Ans. 1 = 7210 in.". = 14.67 in.)

/....

Fig. 185

73. Moment of Inertia with Respect to Inclined Axes. In

Fig. 185, let X and Y be any two rectangular axes for which

Ix = \ ]f dA and ly = j x^ dA. X' and Y' are axes at the angle

6 with the original pair. Then

Ix
=h^^ dA and ly = I^^'y

dA.

Also y' = ycosd — X sin 6 and x' = xcosB + y sin 6, from the

geometry of the figure. By squaring these values and substituting

above,

Ix' = j y^cos^edA -2 J xycosd sine dA + j x^sin^edA.

By integration,

Ix' = cos^ d- Ix + sin2 d- Iy —2 cose sine
I
xy dA.

cos^e
1 + cos 2 e

sin^e =
1 - cos 2 9

and

2 cos 6 sine = sin 2 e.

By substitution of these values the equation above becomes

Ix + Iy Ix — Iv C
Ix-=

2
+

2
cos2e-sin2 6lJxydA. (1)
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Similarly,

Iy' = ^^^^^ - ^^~^^ cos2e + sm2d JxydA. (2)

By adding these expressions for Ix' and Iy it is found that

Ix' + Iy' = Ix + Iy,

as shown in Art. 70.

Equations (1) and (2) simplify what would otherwise be a very

tedious operation. If the moments of inertia of an area with

respect to any two rectangular axes in the plane of the area are

known, the moment of inertia with respect to any coplanar in-

clined axis passing through their point of intersection may be

easily computed.

EXAMPLE.

Determine the moment of inertia of a rectangle 6 inches wide and 2 inches

high with respect to an axis through the lower left-hand corner at an angle of

15° with the base, as in Fig. 186. „

Solution:— 7i = 16. Jj, = 144. , K 6"- >; ^
xy dA = I I

xdxy dy = 36.

Ix' = 80-64 cos 30° - 36 sin 30°.

7x' = 6.58in.^ Fig. 186

Problem 1. Solve for Iy of the rectangle of Fig. 186. Ans. 163.4 in.*.

Problem 2. Determine , /z' of a 3-inch square with respect to a diagonal.

Ans. 6.75. in.^

Problem 3. Solve for Ix of the rectangle of Fig. 186 if 9 = — 15°.

Ans. 42.6 in.«.

Problem 4. A rectangle 2 inches wide and 4 inches high is placed with the

origin of coordinates 2 inches below the lower left-hand comer. Determine

Ix' for the axis through this origin at an angle of 15° with the horizontal.

Ares. 114.1 in.*.

74. Product of Inertia. By analogy with moment of inertia,

the expression I xy dA is called the Product of Inertia of the area

and is denoted by H. The form of the expression shows that

product of inertia is always taken with respect to a -pair of rec-

tangular axes.

// either one of the axes is an axis of symmetry for the area, the

product of inertia with respect to that pair of axes is zero.
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Proof: — Let Fig. 187 be any area symmetrical with respect to

the Y axis.

H =
I
xy dA.

In the summation of the products xy dA it

will be seen that for each term (+x)ydA
there is a numerically equal term (— x) ydA
to neutralize it. Hence for a figure sym-

metrical with respect to the Y axis,

H = jxy dA = 0.

Fig. 188

Similarly, ff = for a figure symmetrical with respect to the X
axis.

75. Relation Between Products of Inertia with Respect to

Parallel Axes. After the product of inertia

is determined with respect to a pair of

rectangular centroidal axes, it may be calcu-

lated easily with respect to any other pair of

parallel axes.

In Fig. 188, OX and OY are any two

rectangular centroidal axes, O'X' and O'Y'

are any other pair of parallel axes in the same

plane, (x, y) are the coordinates of dA with

respect to the original axes and (m + x,n + y)

the coordinates of dA with respect to the new axes.

Ho' = J{m + x){n + y) dA.

Ho' = I mndA -\- JmydA-\- jnxdA-{-
J
xydA.

Ho' = mnA + + + Ho.

Ho is the product of inertia of the area with respect to the

original axes.

This expression is similar to the transfer formula for moment of

inertia, d^ being replaced by mn.

The quantities m and n may be either positive or negative, so the

term mnA may be either positive or negative. If the centroid of

the area is in the first or third quadrant of the axes with respect to

which H is taken, mnA is positive; if in the second or fourth

quadrant it is negative.
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As in the case of moment of inertia, the

product of inertia of an area composed of

several simple parts with respect to any

pair of axes is equal to the algebraic sum
of the products of inertia of the several

parts with respect to the same axes.

For example, if Hxr of the angle section

of Fig. 189 is required, the area may be

divided into the two rectangles M and N. ^^°- ^^^

Then Hxy of the angle section = Hxy of M + Hxr of N.
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Problem 2. Locate the centroidal axes parallel to the legs of the

6" X 6" X 1" angle section, Fig. 189, and calculate the product of inertia

of the section with respect to these axes. Ans. +20.44 in.*.

Problem 3. Determine the product of inertia of a 4" X 3" X I" angle

section with respect to the centroidal axes parallel to the legs.

Ans. ±2.019 in «.

76. Maximum and Minimum Moments of Inertia. The

moment of inertia of an area with respect to an axis at an angle 9

with some original axis is given by Equation (1), Art. 73.

Ix' = ^-^^ + ^^^cos20 - Hsm2d.

As Q varies the value of Ix varies. The values of Q for maximum
and minimum values of Ix are determined by differentiating the

expression for Ix! and placing the first derivative equal to zero.

^ ={Jy -Ix)sm2d -2H(ios,2e.
do

dl '

For the maximum or minimum value of Ix', —^ = 0. Then
UP

tan 26 = , " •

Two values of 2 differing by 180° are obtained from the equa-

tion above, and therefore two values of 6 differing by 90°. One
value gives the angle for maximum Ix, the other the value for

minimum Ix'- The maximum and minimum moments of inertia

are called the principal moments of inertia, and the corresponding

axes the principal axes.

If either the X or F axis is an axis of symmetry, H = 0, by Art.

74, therefore tan 2 e = 0. 2 = 0° or 180° and = 0° or 90°, so

the X and Y axes are the principal axes.

Problem 1. Determine the maximum and minimum moments of inertia

of the rectangle shown in Fig. 191 with respect to axes through the lower left-

hand corner. Ans. Max. / = 73.14 in.*. Min. / = 0.86 in.«.

Problem 2. Determine the maximum and minimum moments of inertia of

a 4" X 3" X i" angle section with respect to centroidal axes.

Ans. Max. / = 6.14 in.». Min. / = 1.33 in.*.

Problem 3. Determine the maximum and minimum moments of inertia of

a 6" X 6" X \" angle section with respect to centroidal axes.

Ans. Max. / = 31.75 in.*. Min. / = 8.07 in.*.
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77. Moment of Inertia of Mass. The moment of inertia of a

body with respect to any axis is the sum of the products of each

elementary mass and the square of its distance from the axis.

The same notation is used for moment of inertia of masses as

was used for moment of inertia of areas, with the addition of M
for mass, V for volume and y for mass per unit volume.

M = yV and dM = y dV.

I = Cx^dM = y fx'dV.

Units of Moment of Inertia of Masses. The moment of inertia of

a body is in terms of a length squared and a mass. Since the unit

of mass commonly used in engineering is one containing g units of

weight and g is usually given in units of feet per second per second,

all dimensions should be in feet. No name has been given to the

unit moment of inertia of mass.

EXAMPLE 1.

Show that for a right prism of altitude h, with respect to an axis perpendicu-

lar to the base,

I = yh X Polar I of Base.

Solution:— In Fig. 192, let the Y axis be the inertia

axis of the prism. The mass of the elementary prism

whose altitude is h and base dA is dM = yh dA.

ly =Cp^dM = yhCp'^dA.

ly = yh X Polar I of Base.

Bight Circular Cylinder. Since the polar moment
of inertia of a circle with respect to its center is I irr'',

the moment of inertia of a cylinder of radius r and

altitude h with respect to its geometric axis is given by

I = yh X^Tvr* =~MrK

y M -Wo

EXAMPLE 2.

Show that for a homogeneous sphere of radius r, with respect to a diameter,

I = -z Mr'^ and k =
-vAl

Solution: — In Fig. 193 let the Y axis be the inertia axis. Let the sphere
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be divided into thin plates by planes perpendicular to the Y axis, each of

thickness dy and of radius ri. One plate is shown at A.

.,2 =7-2 — 7j2

and

ri' = r' — y,

dM = yirr^ dy = yir (r' — ij^) dy.

By Example 1 the moment of inertia of this thin plate with respect to the

Y axis is

I- jnjr.. > AlY=^dMrr' = ±yir(r^ y^fdy.

If these differential moments of inertia are summed between the Umits —r
and +)-, the entire moment of inertia of the sphere is obtained.

I = \y-K^\r''-y^Ydy.

2
7 = ^Mr'', since

Vm Vs

2 4
7 = 5 Mr^, smce M = yV = 7 , '^r'.

Fig. 193

EXAMPLE 3.

Derive the expression for the moment of inertia of a circular plate of radius

r and thickness dt with respect to a centroidal diameter.

Solution:— Fig. 194(a) is a top view and Fig. 194(b) is an edge view of the

plate. Let each dM be a prism of volume pdpdSdt whose distance from the X
axis is y.

dM = ydV = ypdpdS dl; y = psiaB.

Ix=jy^dM=Jp'
sin" eyp dp dB dt,

Ix =y dtC "

J"
sin'BdBp'dp

=
J TTTT' dt

= i Mr'.
4
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EXAMPLE 4.

Derive the expression for the moment of inertia of a slender rod with respect

to an axis through one end.

Solution: — Let L be the length of the rod, Fig. 195, W its weight, M its

mass, w its weight per linear unit and 6 its angle with the Y axis.

y
'Y

r2 =

= Cf'dM.

Then

By integration.

If the axis is normal to the rod, S

dM = 7 dW = yw dl.

ly = CpsiD?eywdl = yw sin^e f P

V 1
/ = 7M sin2 9 -5- = - MI? sm* B.

dl.

90° and / = ^ MU.

^>

Fig. 195

Problem 1. Derive the expressions for the moment of inertia and radius of

gyration of a homogeneous paraUelopiped whose sides are a, b and c, with

respect to a geometric axis parallel to side c. . - M , „ , ,„^
Ans. Jf = 12^"' + * )•

Problem 2. Derive the expressions for the moment of inertia and radius of

gyration of a homogeneous right circular cone with respect to its geometric

axis. The radius of the base is r and the altitude is h. Ans. / = t% Mr^.

Problem 3. Determine the moment of inertia of a cast iron cylinder 2 feet

in diameter and 6 inches high with respect to its geometric axis.

Ans. I = 10.97.

Problem 4. Determine the moment of inertia of a cast iron governor ball

4 inches in diameter with respect to its diameter. Ans. I = 0.00301.

78. Relation Between Moments of Inertia of Mass with

Respect to Parallel Axes. The moment of inertia of a body with

respect to any axis is equal to the moment of inertia with respect to a

y
parallel centroidal axis plus the product of the

mass of the body and the square of the distance

between the axes.

\x In S3Tnbols,

I = I(j + Md^

Proof:— Fig. 196 represents a section of the

body perpendicular to the inertia axis which
Fig. 196 passes through G. Let be the point where

any parallel axis cuts the section. Then with respect to the axis

through 0,

I' dM.
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From the figure,

p2 = (x + o)2 + (y + by = x^ + y^ + a^ + b^ + 2ax + 2 by.

Then

I = C{x^ + 2/2) dM + C{a^ + b^) dM + C2 ax dM +J2 by dM

= la + Md^ + + 0. (See Arts. 69 and 70.)

By dividing by M,

or F = V + d\

EXAMPLE.

Show that for a right circular cylinder with radius r and altitude h, the

moment of inertia with respect to a centroidal axis

' ^?~~N parallel to the base is

Solution:— Consider the cylinder to be divided into

circular plates, each of thickness dy, one of which is

shown at A in Fig. 197. The moment of inertia of

plate A with respect to its own central axis X' is \ dHf,
as shown in Art. 77, and with respect to axis X is J

dMr^ + dMy^. dM = y-ht^ dy, so the moment of inertia

of aU the plates, or the entire cylinder, with respect to

axis X is
Fig. 197

By integration,

1 r r
^X ^ 4T'rr<J dy + ywr'j y'^

Problem 1. Derive the expression for the moment of inertia of a right

circular cone of height k and radius of base r with respect to an axis through

the vertex parallel to the base.
Ans. I = -M

5 irM
Problem 2. A rectangular parallelopiped has sides a, 6 and c. Derive the

expression for its moment of inertia with respect .to the central axis in the ac

face, parallel to c. . , ,,/a^ , 6'\

Problem 3. Derive the expression for the moment of inertia of a sphere

with respect to a tangent. , , 7 , , „
Ans. I = -z M'fi.

a
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Problem 4. Derive the expressions for the moment of inertia and radius of

gyration of a right circular cylinder with respect to a diameter of the base.

Ans. I = M
Note:— If r^ is negligible compared with h'^, the expression for / becomes

i Mh?, as in Example 4, Art. 77.

Problem 6. Determine the moment of inertia of a steel cylinder 2 inches in

diameter and 4 feet long with respect to a diameter of one end.

Ans. I = 7.08.

Problem 6. Determine the moment of inertia of a 3-inch cast iron governor

ball with respect to an axis 8 inches from its center. Ans. I = 0.0515.

79. Determination of Moment of Inertia by Experiment. If

the form of a body is such that its moment of inertia cannot be

computed readily by integration, it may be determined experi-

mentally with a fair degree of accuracy. There are several

methods but the one most readily applicable to problems occurring

in engineering is the pendulum method. As will be shown in Art.

108, the radius of gyration of a compound pendulum is given by

in which T is the time of one complete oscillation, g is the accelera-

tion of gravity and d is the distance from the axis of rotation to

the parallel centroidal axis. The axis of rotation must be parallel

to the axis for which the moment of inertia is required. If the

body is vibrated and time T of one oscillation determined, k may
be computed. Then 7o = Mk^, in which 7o is the moment of

inertia with respect to the axis of rotation. The moment of

inertia with respect to the parallel centroidal axis is given by

Zg = 7o - Md'.

From this, if desired, the moment of inertia with respect to any

parallel axis may be computed.

Problem 1. A pair of 33-inch cast iron freight car wheels and their con-

necting axle weighed 700 lbs. When suspended from knife edges 4 feet from

the axis of the wheels they vibrated 100 times (complete oscillations) in 3

minutes and 43.7 seconds. Determine I and k with respect to their centroidal

axis. Ans. I = 6.99. k = 0.568 ft.

Problem 2. The connecting rod of a Corliss engine weighed 267 lbs. Its

center of gravity was 48.5 inches from the crosshead pin. When suspended

from the crosshead end it vibrated 40 times (complete oscillations) in 96 seconds.

Determine / with respect to the axis of the crosshead pin.

Ans. I = 157.4.
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GENERAL PROBLEMS.

Structural Steel Shapes and Built-up Sections.

Problem 1. Locate the position of the gravity axes parallel to the legs of

a 6" X 3i" X i" angle section and compute the moment of inertia with

respect to each axis. Ans. /,_i = 3.342 in.*, /z-j = 12.864 in.*.

Note: — Fillets and rounded corners are neglected.

Problem 2. The dimensions of a standard 12-in. 31,5-Ib. I-beam are given

in Fig. 198. Compute the moment of inertia and radius of gyration with

respect to the centroidal axes 1-1 and 2-2.

Ans. /i-i = 216.15 in.*, /m = 9.51 in.*.

.?r

.74' y?y
-TT

/2"-

Fig. 198

i

-J
/i

ri!3- J\
~¥r

-¥
^
4m-

Fig. 199

Problem 3. Structural steel Handbooks give the following formula for the

moment of inertia of an I-beam with respect to axis 1-1, Fig. 199.

'-^=r2b'^'-H^{''-^')l
Derive this formula.

Problem 4. Compute the moment of inertia of the symmetrical Z-bar

shown in Fig. 200 with respeo,t to axes 1-1 and 2-2.

Ans. h-i = 42.12 in.*, h-^ = 15,44 in*.
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Problem 6. If a 14 in. by ^ in. flange plate is added to each flange of the I-

section of Problem 5, what is the moment of inertia of the section with respect

to axis 1-1? Ans. /j_i = 1026.0 in.^

Problem 7. In Problem 5, what difference is made if an 18 in. by | in

web plate is substituted for the 12 in. by | in. plate? Height h' = 18i in.

Ans. Ij-i is 2^ times as much. Ii-^ is changed only in the second

decimal place.

"2
<-72 •—••>

-/zi

J /-

e!veh.I,.i aflI-beam'=?lS.8inf':

Fig. 202

eivenJ,.,of/Channel=4CZ7th^

ll^of/Channel' ll.??mfi

AreaofIChannel= 14-Jlsq. in.

Fig. 203

I

V-,

-»\

Problem 8. Two standard 12-in. 31.5-lb. I-beams are used with two 14 in.

,

by I in. plates to form a box-girder, Fig. 202. Compute the moment of iner-

tia of the section with respect to axis 1-1. Ans. 7i-i = 1286.6 in.*.

Problem 9. A column is formed by two 15-in. 50-lb. channels and two

20 in. by \ in. plates, as shown in Fig. 203. Compute the moment of inertia

of the section with respect to each axis.

Ans. /i_i = 2007.1 in.''. 1^-7. = 2074.6 in.*.

m'-

1^28.15in.f

Area'.S.44
sq.in.

^^
\1

Fig. 204

Problem 10. The plate girder shown in Fig. 204 has a web plate 48 in. by |

in., flange angles 6" X 6" X I" and flange plates 14 in. by 1 in. Compute /i-i,

Ans. /i-i = 37,406.6 in.".
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Moment of Inertia of Masses.

Problem 11. A steel disk 30 inches in diameter and 3 inches thick has a

cylindrical hole 4 inches in diameter at the center and another 2 inches in

diameter 12 inches from the center. What is the moment of inertia with

respect to the geometric axis? Ans. 14.5016.

<-b->

±.

1^^^

E^l

^

/K-ES^

r'^i

N

Fig. 206 Fig. 207

Problem 12. A fl3rwheel governor consists of a cast iron plate 4 in. by
1 in. by 22 in., Fig. 205, which connects the cast iron cylinders A and B.

The cylinder at A is 8 inches in diameter and 2 inches thick. The one at B is

8 inches in diameter and 4 inches thick. Compute the moment of inertia of

the governor with respect to an axis through parallel to the axes of the

cyhnders. Ans. In = 4.797.

Problem 13. A cast iron pulley with a soUd web has dimensions as shown

in Fig. 206. Compute its moment of inertia with respect to the axis of rota-

tion. Ans. I = 4.531.

Problem 14. Compute the moment of inertia of the cast iron flywheel

shown in Fig. 207. The wheel has six eUiptical spokes which may be con-

sidered as slender rods. Ans. I = 74.67.



PAET II. KINETICS.

CHAPTER VII.

RECTILINEAR MOTION.

80. Velocity and Speed. The velocity of a particle is its rate

of motion witH respect to an assumed point of reference. (Any-

body which is small compared to its range of motion is considered

to be a particle.) The point of reference usually assumed is some

point which is at rest with respect to the surface of the earth.

Motion is said to be rectilinear if the path of the particle is a straight

line, and curvilinear if the path is a curved line. Curvilinear

motion will be discussed in Chapter VIII.

If a particle in rectilinear motion traverses equal spaces in equal

time intervals, its velocity is uniform and is equal to the ratio of

any given space s to the time t in which it was traversed, or

s
v = -.

If a particle moves over unequal spaces in equal time intervals, its

velocity is variable. In this case the ratio of any given space s to

the time t in which it was traversed gives only the average velocity.

As the space s is shortened until it beconies ds, this average velocity

approaches the value of the instanta,neous velocity at the point

where ds is taken. This instantaneous velocity is

ds
^ dt

Velocity has direction as well as magnitude. It is therefore a

vector quantity and is represented graphically by a vector. Speed

is the scalar or quantity part of velocity and is merely the rate of

travel, irrespective of direction.

The units of velocity and speed are any units of length and time,

as feet per second, miles per hour, etc.

119
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Problem 1. Reduce velocity of 60 miles per hour to terms of feet per second.

Atis. 88 ft. per sec.

Problem 2. A man runs 100 yards in 10 seconds. What is his average

speed in miles per hour? Ans. 20.45 mi. per hr.

Problem 3. If in a certain motion of a body, s = it', s being in feet and t

in seconds, what is the velocity of the body at the end of 4 seconds?

Ans. Vi = 192 ft. per sec.

81. Acceleration. Acceleration is the rate of change of velocity.

If the velocity is constant, the acceleration is of course zero. If

the velocity is changed by equal amounts in equal time intervals,

the acceleration is constant; if by unequal amounts in equal time

intervals, it is variable. When the velocity increases, the accelera-

tion is usually called positive; when the velocity decreases the

acceleration is usually called negative.

If the acceleration is constant, it is the total change in velocity

during unit time and its amount is obtained by dividing the total

change in velocity by the time t in which the change was made.

If a represents the acceleration, vq the initial velocity and v the

final velocity,

V — Vo
fl ^ •

t

If Vo = 0,

V
a = -.

If the acceleration is variable, its value at any instant is given

by the ratio of the infinitesimal change in velocity dv to the corre-

sponding time dt, or

* dt dt2*

By eliminating dt between the equations v = -j- and a = ^r,
at dt

there is obtained the important relation,

V dv = a ds.

The units used are those of velocity and time. If the velocity

of a body changes from to 20 ft. per second in 4 seconds, its

acceleration is a velocity change of 5 ft. per second in a second, or

as commonly written, 5 ft. per sec. per sec. If the velocity of a

body decreases from 40 miles per hour to 20 miles per hour in 10

seconds, the acceleration is —2 miles per hour per second.
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Acceleration, like velocity, is a vector quantity and is repre-

sented graphically by a vector.

Problem 1. A street car attains a velocity of 10 miles per hour in 4 seconds.

What is its average acceleration in feet per second per second?

Ans. 3| ft. per sec. per sec.

Problem 2. If the piston of a steam engine attains a velocity of 3 feet per

second in ^^ of a second, what is its average acceleration? What is the space

traversed if the acceleration is constant?

Ans. a = 120 ft. per sec. per sec. s = 0.45 inch.

Problem 3. If in a certain motion of a body s = 4 <*, s being in feet and t

in seconds, what is the acceleration of the body at the end of 4 seconds?

Ans. Oi = 96 ft. per sec. per sec.

82. Constant Acceleration. The integration of the differen-

dv
tial expression fl = jt between the proper limits gives the velocity

in terms of the time. A second integration gives the distance in

terms of the time.

a = -jT, or dv = a dt.

Let vo be the initial velocity. Then, if a is constant,

Xdv = a j dt;

V — Vo = at;

or V = Vo + at. (1)

ds
Since v =^n , ds = vodt + at dt.

dt

Jds = Vo I dt +a I tdt.
B I/O I/O

s = Vot + i it\ (2)

The expression vdv —ads may be integrated in a similar manner.

Jvdv = a j ds;
"o •'O

v^ v^

or v'' = Vo' + 2as. (3)

If % = 0, v^ = 2 as.

Equations (1), (2) and (3) may be derived by simple algebra, as

follows. If a particle gains a velocity of a during each unit of
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time, in t units of time it will have gained at units of velocity. Its

final velocity, then, will be the sum of its initial velocity Vo, and
the velocity it has gained, at.

v = Vo + at. (1)

The average velocity during time t will be the mean of its initial

velocity vo and its final velocity vo + at. The average velocity is

—^— = Vo -\- ^ at. The space passed over will be given by the

product of the average velocity and the time, or

s = ^^tl« t = vot + I at^. (2)

If t is eliminated from equations (1) and (2), the resulting equation

is v^ = Vo=' + 2 as. (3)

Problem 1. A car traveling at the rate of 40 feet per second is brought to

rest in a distance of 100 feet. What is the average acceleration?

Ans. a = —8 ft. per sec. per sec.

Problem 2. A ball has an initial velocity of 10 feet per second and an

acceleration of 4 feet per second per second. What is the velocity at the end

of 4 seconds? At the end of 5 seconds? What is the space passed over during

the 5th second? Ans. Vi = 26 ft. per sec. v^ = 30 ft. per sec. s = 28 ft.

83. Falling Bodies, Air Neglected. For comparatively short

falls of bodies near the surface of the earth, the attraction of the

earth may be considered constant; consequently, if the resistance

of the air is neglected, the acceleration caused by this attraction

may also be considered constant. This acceleration, denoted by

g, is approximately 32.2 ft. per sec. per sec, and if no other value

is given, this should be used in the solution of all problems. (The

accurate value is given by

g = 32.0894 (1 + 0.0052375 sin^ I) (1 - 0.0000000957 h),

in which I is the latitude in degrees and h is the elevation above

sea level, in feet.)

The equations of motion derived in the preceding article become,

for falling bodies,

V = Vo + gt. (1)

h = Vot + igt^ (2)

v^ = vo^ + 2 gh. (3)
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Space, velocity and acceleration are all positive downward. If

the body falls from rest, Vo = 0, hence v = V2 gh. If the body is

projected vertically upward, vo is negative. The body rises t = -

J,
2

seconds through a distance h = — x— where it comes to rest. It

then falls from rest and passes the initial point with a velocity of

+Vo and continues downward from that point exactly as though

projected downward with the same velocity.

EXAMPLE.

A ball is shot upward with a velocity of 30 ft. per sec. One second later

another is shot upward with a velocity of 100 ft. per sec. Where and when do

Ihey pass?

Solution:— Let si be the distance from the starting point to the point where

they pass, h the time elapsing after the first is discharged, and fe the time

elapsing after the second is discharged.

Then
<2 = <i - 1.

The initial velocity wo is negative in each case. After ii seconds the first ball

will be a distance from the starting point, s = v4 + i gP, or si = —30 U +
16.1 UK

At the same instant the second ball, which has been traveling only k — \

seconds, will be a distance from the starting point, s = wot + J gP, or

Si = -100 {k - 1) + 16.1 {ti - 1)2.

When the two balls pass, si = Si, so

-30 i, + 16.1 k^ = -100 {h - 1) + 16.1 01 - 1)2.

ti = 1.137 sec.

Si=Si= -13.3 ft.

It will be noticed that the first ball has reached the top point in its path in

30
^^-^ or 0.932 sec, and is therefore moving downward when they pass.

Problem 1. If a body falls freely from rest, what is its velocity 5 seconds

later? How far has it fallen? Ans. v = 161 ft. per sec. s = 402.5 ft.

Problem 2. A body falls from a table to the floor, a distance of 3 feet.

What is the velocity with which it strikes the floor? What is the time re-

quired? Ans. V = 13.9 ft. per sec. t = 0.431 sec.

Problem 3. The striking velocity of a pile driver hammer is to be 50 feet

per second. From what height must it be dropped?
'

Ans. 38.8 ft.

Problem 4. From a mine cage which is descending with a velocity of 20

feet per second, a body rolls off and falls 200 feet to the bottom of the shaft.

With what velocity does it strike and what is the time required?

Ans. V = 115.2 ft. per sec. t = 2.96 sec.

Problem 5. In Problem 4, substitute " ascending " for " descending " and

solve. Ans. v = 115.2 it. per sec. t = 4.20 sec.
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84. Relation Between Force, Mass and Acceleration. New-
ton's Second Law of Motion, Art. 6, states that the accelerations

of bodies are directly proportional to the resultant forces acting

and inversely proportional to the masses acted upon. Let F be

the resultant force which acts upon mass M to produce accelera-

F
tion a. Then a varies as— , ov F varies as Ma.m

F = KMa,

K being a constant, the value of which depends upon the units

used. In American engineering practice the unit of force used is

the pound and the unit of acceleration is the foot per second per

second. In order to make the constant K = 1 and thus simplify

the expression, the unit of mass used is that amount in which unit

force produces unit acceleration. If a resultant force of one pound

acts upon a quantity of matter weighing one pound, the accelera-

tion produced is 32.2 feet per second per second as in the case

of a falling body. If the quantity of matter is increased and the

force remains constant, the acceleration will decrease proportion-

ately, so if the quantity of matter weighs 32.2 pounds, the force of

one pound will produce an acceleration of one foot per second per

second. It is seen, then, that 32.2 pounds of matter is the unit

of mass in which unit force produces unit acceleration and if this

unit is used, K= 1. In order to obtain the number of mass units

in a given quantity of matter, its weight in pounds must be divided

W
by 32.2. That is, M = — • Then

W
F = Ma = —a.

g

In the equation F = Ma, M is a. scalar quantity and F and a

are vector quantities. If Fi and F^ are any two components into

which the force F may be resolved, and ai and oz are the corre-

sponding components of the acceleration, parallel respectively to

F] and F2, it follows that

Fi = Mai and Fj = Ma^.

If the components are the rectangular components F^ and Fy,

Fj = Max and F, = Muy.
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EXAMPLE.

A horizontal force of 10 pounds is exerted upon a body whose weight is

100 pounds and which is resting upon a smooth horizontal surface. What is

the velocity of the body at the end of 5 seconds, and what is the distance

passed over?

W
SohUion;— F = Ma = — o.

9

a = 3.22 ft. per sec. per sec.

The force is constant, so the body has uniformly accelerated motion. Since

the body starts from rest, the equations of motion are

V = at and s = i aP.

V = 3.22 X 5 = 16.1 ft. per sec.

s = § X3.22 X25 = 40.25 ft.

Problem 1. A resultant force of 50. pounds acts for 4 seconds upon a body
weighing 200 pounds. What is the acceleration of the body and the space

passed over during that time?

Arts, a = 8.05 ft. per sec. per sec. s = 64.4 ft.

Problem 2. An elevator which weighs 1000 pounds starts from rest and in

2 seconds has attained a velocity of 10 feet per second upward, with uniform

acceleration. What is the tension T in the supporting cables?

Am. Total T = 1155 lbs.

Problem 3. If in Problem 2 the tension is reduced to 900 pounds, in what
time wiU the elevator come to rest? Ans. 3.1 sec.

Problem 4. A body weighing 10 pounds is projected down a smooth 45°

plane with an initial velocity of 3 feet per second. How far will it move
during the third second? If at the end of the third second a constant resisting

force of 15 pounds begins to act, how long will it move before coming to rest?

Ans. S3 = 59.91 ft. 2.8 sec.

85. Effective Forces; D'Alembert's Principle. In general, any

particle of a body considered free has a system of forces acting upon

it, some of which may be external to the body as a whole and some

of which are internal. The resultant of all these forces for the

particle is called the effective force for the particle, and is equal to

dM • a, dM being the mass of the particle and a its acceleration. If

the particles of the body were all made free of each other and each

had its effective force acting, the motion of the system of particles

would be the same as the actual motion of the body. The result-

ant of all these effective forces for all the particles of the body is

called the resultavi effective force for the body.
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Since the internal forces between the particles of a rigid body are

always mutual, that is, equal and opposite, their total resultant for

the whole body is zero. It follows then that the resultant effective

force for all the particles of a rigid body must be equivalent to the

resultant of the external forces. If F is the resultant of the external

forces,

F = CdMa.

If the motion is translation, a is the same in amount and direc-

tion for all of the particles, so, for translation, F = oE dM = Ma.
Since each particle has a force equivalent to dM • a acting upon it

and since each force is proportional to the mass of the particle, the

point of application of the resultant is necessarily the same as that

of a system of particles acted upon by their own weights. As

shown in Art. 43, this is the mass center of the body.

If the system of effective forces were reversed and added to the

external system of forces, the result would be equilibrium without

changing any of the external forces.

This principle is called D'AIembert's Principle and is applicable

to both rigid and non-rigid bodies, but only in the case of rigid

bodies is it sufficient to determine the motion.

By this method a problem in kinetics is reduced to a simpler one

in statics, for then all the equations of static equilibrium will apply;

SF:, = 0, HFy = and S Mom. = 0. The student should keep in

mind that this is only an imaginary force system, added to the

actual system for the purposes of solution.

M -^ M ^-^

(a) (b)

Fig. 208

This method of procedure does not conflict with the method of

Art. 84, as will now be shown. In Fig. 208(a), let F be the result-

ant force acting upon mass M. From Art. 84, the force F pro-

duces an acceleration a in the mass M of such an amount that

W
F = Ma = — a.

g

In Fig. 208(b), F is the resultant force acting upon mass M. The
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W
resultant effective force — a is reversed and added to the system to

produce a condition of equilibrium. Since the system of forces

acting upon the mass M is now in equilibrium, ^Fx =0, so

F a = 0, or F = — a,

g g

as before. The reversed effective force is sometimes called the

inertia force of the body, since it may be considered as a force

resisting the change in velocity.

In a problem of this kind, no advantage is gained by the use ot

this method. If the solution of a problem requires the use of a

moment equation, however, the addition of the reversed effective

force simphfies the solution very much, as will be shown in the

following Example.

EXAMPLE.

A safe with weight and dimensions as shown in Fig. 209(a) is pulled along

a horizontal track by a force of 100 pounds. A force of 60 pounds is sufficient

to move it uniformly. Determine the normal components of the reactions at

A and B.

Fig. 209

Solution:— Fig. 209(b) shows the free body diagram, with all the external

W
forces acting and in addition the reversed effective force — a, acting through the

center of gravity. The free body now has a balanced system of forces acting

and the equations of equilibrium are true.

Since 60 poimds will move the body uniformly, Fi + Fi = 60.

W
LFx = — a.

9

100
W

. 60 = — o = 40.
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The equation SM^ = gives

100 X 1 - 40 X 3 - 1000 X 1+ Bj X 2 = 0.

Bi = 510 lbs.

From the equation SFj, = 0,

Ri = 490 lbs.

Problem 1. In the example above, consider the 100-pound force to be

removed whUe the resisting frictional forces Fi and Fz remain the same.

Determine Ri and Ri while the safe is coming to rest.

Ans. B, = 590 lbs. iJj = 410 lbs.

Problem 2. A 50-ton car moving with a speed of 30 miles per hour is

brought to rest by means of the brakes in 6 seconds. The height of the center

of gravity of the car above the track is 5 feet and the distance between the

trucks is 30 feet. Find the pressure on each truck.

Ans. 53,793 lbs. on front. 46,207 lbs. on rear.

Problem 3. A rectangular block 1 foot square and 4 feet long stands on

end on the flat surface of a car with its sides parallel to the motion of the

car. What acceleration may be given to the car before the block tips if the

friction is sufficient to prevent sUding?

Ans. limiting a = 8.05 ft. per sec. per sec.

86. Composition and Resolution of Velocities and Accelera-

tions. As stated previously, velocity and acceleration are vector

quantities and can therefore be compounded
or resolved the same as forces and displace-

ments. (See Chapter I.) If a particle at point

Fig 210 ^' ^^^' ^^^' ^® displaced first to B, then to D,

its resultant displacement is AD. If the dis-

placements were in the other order, the path would be ACD and
the displacement would be AD as before. If the displacements

occurred simultaneously, the path would be AD.
If AB represents a force acting upon a body at A, and AC repre-

sents another acting upon the same body, the resultant force, if

they are simultaneous, is represented by AD.
The forces represented by AB and AC produce corresponding

proportional accelerations, which to some scale are also represented

by vectors AB and AC, and if the two are simultaneous, the result-

ant acceleration is given by the vector AD.
If the forces act during time t, each produces its corresponding

velocity, v = at. If not simultaneous, the vectors AB and AC
represent to some scale the velocities acquired. If they are

simultaneous, the vector AD represents the resultant velocity.
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In the discussion of some problems it is often much simpler to

consider the velocity or acceleration as made up of certain com-

ponents. Thus a velocity is often resolved into its x and y com-

ponents, an acceleration into its normal and tangential components,

etc.

Problem 1. A body has a velocity of 120 feet per second directed at an

angle of 45° with the horizontal, as shown in Fig. 211. Resolve the velocity

into horizontal and vertical components. Resolve

into components parallel and perpendicular respec-

tively to the 30° line, AB.
Ans. Vx = Vy - 84.84 ft. per sec. 116.90 ft. per

sec. 31.06 ft. per sec.

Problem 2. A body has an acceleration verti-

cally downward of 32.2 feet per second per second p oil
and an acceleration horizontally of 4 feet per second

per second. What is the resultant acceleration of the body? What is the

velocity of the body at the end of 0.3 of a second?

Ans. a = 32.45 ft. per sec. per sec. at 7° 05' with vertical, v = 9.74 ft. per

sec. at 7° 05' with vertical.

87. Acceleration Varying vsrith Distance; Simple Harmonic
Motion. If the acceleration of a particle is variable, it may be

given in terms of the velocity, of the time, or of the distance from

some fixed point. In any case, it is necessary to analyze the

motion by means of the equations,

ds dv d^s , , ,
V = -r., a = -T: = ^:i and vav = ads.

dt dt dt^

If a particle has a motion along a straight line with an accelera-

tion always directed toward a fixed point on the line and propor-

tional to its displacement from that point in either direction, its

motion is vibratory and is called Simple Harmonic Motion. Since

the acceleration is always toward a fixed point in its path, it is

necessarily directed oppositely to its displacement; that is, if the

, displacement is to the right or positive, the

<-s->\
I

acceleration is to the left or negative.

H^ 0~fy~fi/
In Fig- 212, let the particle be at A with

Fig 212
displacement s from the fixed point 0, and let

it be moving to the right with velocity v and

acceleration —a. The limiting values of s are -f-s' and — s', and

the velocity of the particle at is vq.

From the definition,

a = —Ks,
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K being a constant representing tiie acceleration at unit distance

from 0. Then

vdv = ads = —Ks ds.

vdv = —K
I

sds.

0^ =
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the time in terms of the distance. By eliminating s between these

two equations, the relation between velocity and time is obtained.

v^ = t;oKl -sinHVK).

V =va cos t Vk. (5)

It will be seen from equation (5) that vo is the maximum value of v.

Simple harmonic motion may be illustrated by means of a ball

placed between two horizontal springs and supported by a smooth

plane, as shown in Fig. 213. The ball is attached to both springs

so that when it is displaced, one spring is compressed and the

other is elongated. At the middle position 0, neither spring is

acting. If displaced a distance s' and then released, it will vibrate

back and 'forth from +s' to — s'. This motion would continue

indefinitely if there were no friction of the supporting surface, the

air and the springs.

EXAMPLE.

Let each spring in Fig. 213 be a 20-lb. spring and let the ball weigh 10 pounds.

(A 20-lb. spring is one which is compressed or elongated 1 inch by a static load

of 20 pounds.) If the ball is displaced s' = +2 inches

and then released, what is the value of wo? What is . u^~\ I

the period of vibration T? Find the position, velocity
[

WWWWWl
|

JWWWWW|
and acceleration of the ball 0.25 of a second after i«5^J

release.
Fig,'213

Solution:— The constant K is the value of the

acceleration when s = 1 ft. The force exerted by each spring is 240 times the

displacement s in feet, so the total force exerted by the two springs would be

480 pounds when s = 1 foot.

F = — a, so ai = X = ^ = 1545.6.
g W

From equation (4), period T = —j= = 0.16 sec.

Since v = when s = s', equation (1) gives

Vo = VKs' = 39.3 X J = 6.55 ft. per sec.

In 0.25 of a second the ball has made one complete vibration, with 0.09 of a

second remaining. Time is measured from the position when the ball is

moving to the right, so t = 0.09 + 0.04 = 0.13 sec.

s = —^ sin t Vk
Vk

=^ sin (0.13 X 39.3)

= |||sin292".8

= -0.1537 ft.
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From equation (5) the velocity at the end of 0.25 of a second after release is

V =vo cos 292°.8.

V = 6.55 X 0.388 = 2.54 ft. per sec.

The acceleration at the end of 0.25 of a second after release is given by the

equation

a = -Ks = -1545.6 X (-0.1537) = 237 ft. per sec. per sec.

Problem 1. If in the apparatus of Pig. 213 the ball is not attached to the

springs, what will be its period of vibration? If s' = +3 inches, find vo and

the position, velocity and acceleration J second after release.

Ans. T = 0.226 sec. wo = 6.95 ft. per sec. s = +0.0588 ft. «= -6.75 ft.

per sec. o = —45.4 ft. per sec. per sec.

88. Acceleration Varying with Distance : Direct Solution. If

a body weighing W pounds rests upon a coil spring of scale Q, the

W
spring will be compressed a distance d = j^-^ feet. This position

is called the static position. If the body falls through a distance

h and strikes the coil spring, the motion below the static position is

simple harmonic motion, and if the body should become attached

to the spring the total ensuing motion would be simple harmonic.

In a case of this kind, however, it is simpler to integrate directly

for the equations of motion, and use the initial position of the

upper end of the unstressed spring as the origin.

EXAMPLE.

A ball weighing 100 pounds falls through a distance of 2 feet and strikes

upon a 1000 lb. spring. See Fig. 214. Determine the compression of the

spring, the total time to rest, the maximum velocity and the

maximum acceleration.

Solution:— Since the scale of the spring is 1000 lbs. per

inch, the resistance of the spring against the ball is 12,000 s, s

being in feet. The total force acting upon the ball after it

W
strikes the sprmg is 100 — 12,000 s. From F- = — o,

a = g — 120 gs.

,FiQ-214 vdv = ada =gds-12Qgsds.

Let the velocity at the instant of striking be «i.

vdv = g I ds — 120 g ] sds.

—5-i- =SS-60ss^ (1)
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From the laws of falling bodies, Vi = V2 gh = 11.35 ft. per sec. At maximum
compression, d = 0, so s' = 0.1911 ft. From equation (1),

V = Vvi' + 2gs - 120 gs^.

Since w = -n >

at

C'dt= c

Maximum v = y 128.8 + "
^orT

" ~
"i on C "i on = 11-36 ft. per sec. The

Vvi2 + 2gs- 120 gs'

V 120 g V 4 ff2 + 480 gviU o

^°' '^'''
' = vm [""''

'

- ''""' ( -^)] = °-°'' '^"

From the equation s = | ffi^, the time t' to fall 2 feet = 0.352 sec, so the total

time from release till it comes to rest at the bottom of its travel is t + t' =
0.026 + 0.352 = 0.378 sec.

In order to obtain the value of s for which the velocity is a maximum, ^r
as

from equation (1) is equated to zero. For maximum velocity, s = ^j^ ft.

2 X 32.2 120 X 32^2

120 120 X 120

maximum acceleration is at the bottom of its travel. From the equation for

a given above, maximum a = 32.2 - 120 X 32.2 X 0.191 = -706.2 ft. per

sec. per sec.

Problem 1. Solve the Example above by the equations of harmonic motion.

Problem 2. A 100,000-lb. freight car, equipped with an 80,000-lb. spring,

strikes a bumping post while moving with a velocity of 2 miles per hour.

Find the compression of the spring, assuming that it alone is deformed. (The

equations derived above will not apply to this case but similar equations must
be integrated.) Ans. 2 inches.

89. Motion in which Acceleration Varies

Inversely as the Square of the Distance. t

If a body is at a distance s from the cen- i

ter of the earth, s being appreciably larger

than r, the radius of the earth, the force of at-

traction of the earth varies inversely as the

square of the distance. Let Fig. 215 represent

a diametral section of the earth with a body

at point A, distant s from the center, and let

a be its acceleration. Let the center of the

earth be used as the origin and let distance, velocity and accelera-

tion be considered positive outward.
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Then - = -; . Since the acceleration is negative toward the
9 s^'

earth,

a = -^•

vdv = ads = —g -^ ds.
s^

Jvdv = —gr^ / s'^ds.

„2 = 2ffr2(---j.

'0

7)2

If s = 00, 2; = '\/2gr, so if a body fell toward the earth from an

infinite distance, its velocity would be V2 gr = 6.95 miles per

second for r = 3960 miles. If falling from any finite distance s,

the velocity must be less than this. If projected outward with

this velocity, the body would be carried to an infinite distance.

Problem 1. Find the velocity acquired by a body in falling 1000 miles to

the surface of the earth. Use r - 4000 miles. Ans. 3.12 miles per sec.

90. Relative Motion. By velocity of a body is usually meant

the velocity of the body with respect to the point on the earth from

which the motion is observed. Although any point on the earth

has several motions in space, it is considered to be at rest and the

motion of any body relative to that point on the earth is called its

absolute velocity. The velocity of one body with respect to another

body is called its relative velocity.

Let A, Fig. 216, represent a car, top view, and B a body on the

car. If the car A moves into the posi-

~7
I

tioii ^' ill 01^6 second, BB^ is the

r
I amount of its velocity and also its dis-

placement. If the body B moves from

the position B to Bi relative to the car

while the car has moved from A to A', the vector BB', the result-

ant of BBi and BB2, gives the absolute velocity and displacement

oiB.

Similarly, if vector BB^ represents to some scale the absolute

acceleration of the car A, and vector BBi represents the relative

B
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acceleration of B with respect to A, the vector BB' represents the

absolute acceleration of B.

If either the absolute velocity or acceleration of A or the relative

velocity or acceleration of B with respect to 4 is a variable, the

absolute velocity or acceleration of B is given by the vector sum
of the corresponding instantaneous values of the components.

This principle may be formulated as follows: The absolute

displacement, velocity or acceleration of any body plus (vectori-

ally) the relative displacement, velocity or acceleration of another

body with respect to the first, equals the absolute displacement,

velocity or acceleration respectively of the second. Stated more

briefly,

The Absolute of A -\- the Relative of B to A = the Absolute of B.

If any two of these three quantities are known, the other may be

found.

EXAMPLE 1.

A man swims across a stream which flows at the rate of 2 ft. per second.

If he can swim at the rate of 3 feet per second, in what direction must he swim
in order to land directly opposite? If the stream is 1000

feet wide, find the time to cross.

Solution: — If 0, Fig. 217, is the point from which the

swimmer starts, OC is the required direction of his absolute

velocity. OA, 2 units to scale, represents the absolute

velocity of the stream. Then OB, 3 units to scale, the

vector representing the relative velocity of the swimmer

with respect to the stream, must be at such an angle that

their resultant lies along OC. The graphical construc-

tion gives angle COB = 42°, or by trigonometry, sin COB must equal |, so

COB = 41° 49'.

Length OC is the absolute distance traveled by the swimmer in one second.

OC = V5 = 2.236 feet. The time to cross is t = ^^ = 447 sec. = 7 min.

27 sec.

EXAMPLE 2.

An ice boat runs due east with a velocity of 30 miles per hour. The wind

blows from the northwest with a velocity of 20 miles per hour. How can the

sail be set so that a forward pressure will be exerted?

Solution: — In this problem the two absolute velocities are given, to find

the velocity of the wind relative to the boat. From 0, Fig. 218, lay down the

vectors representing the absolute velocities of the boat and the wind. Join

the ends of the vectors with the line AB, and through draw the vector OC,

equal and parallel to AB. The vector OC represents to scale the velocity of

the wind relative to the boat. Angle COD = 41° 40'. If now the sail is set
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in some such position as MN, at an angle with the axis of the boat less tlian

41° 40', the wind striking it in the direction OC will exert a small forward

thrust. If this thrust is equal to the frictional resistance, the velocity will be

maintained, while if it is greater, the velocity will be still further increased.

It is thus seen that an ice boat may travel faster than the wind which drives it,

a fact which has often been proved experimentally.

FiQ. 218 Fig. 219

Problem 1. Water enters an inward flow radial impulse turbine. Fig. 219,

at an angle of 45° with the radius produced. If its velocity is 100 feet per

second and the rim velocity of the wheel is 60 feet per second, what should be

the angle of the outer edge of the vane in order that the water may enter

smoothly? What is the initial relative velocity?

Ans. 8° 35' with the radius. 71.5 ft. per sec.

Fig. 220

Problem 2. In Fig. 220, AS is the connecting rod and BO the crank of a
reciprocating engine. If the velocity of the crank pin B is 10 feet per second,

what is the velocity of the crosshead A when the crank is at an angle of 45°

with the horizontal? (The relative velocity of B with respect to A must
necessarily be normal to AB, since AB is a rigid body.)

A?is. 8.36 ft. per sec.
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GENERAL PROBLEMS.
Problem 1. In an elevator shaft 200 feet high an elevator is moving

upward with a velocity of 10 feet per second. At the instant it is 6 feet from

the bottom a ball drops from the top of the shaft. When and where will the

ball and the elevator meet and with what relative velocity?

Ans. 3.17 sec. 37.74 ft. from bottom. Rel. v = 112.2 ft. per sec.

Problem 2. From the top of a tower 120 feet high a ball is dropped at the

same instant that another is shot upward from the bottom with a velocity of

100 feet per second. How far from the bottom do they pass?

Ans. 96.82 ft.

Problem 3. A ball is shot upward with a velocity of 50 feet per second.

One second later another is shot upward with a velocity of 100 feet per second.

When and where wiU they pass and with what relative velocity?

Ans. 1.412 sec. 38.5 ft. 82.2 ft. per sec.

Problem 4. A stone is dropped into a well and 3.2 seconds later the sound

of the splash is heard. What is the depth of the well? (Use 1120 feet per

second as the velocity of sound.) Ans. 151 ft.

Problem 6. A pile-driver hammer weighing 800 lbs. drops 12 feet upon a

pile. What is the velocity of striking? If the friction of the air and guides is

assumed constant and equal to 50 lbs., what is the velocity of striking?

Ans. 27.8 ft. per sec. 26.92 ft. per sec.

Problem 6. The hammer of the pile driver in Problem 5 is drawn back up

at a velocity of 4 feet per second. If this velocity is gained in 0.25 of a second

by means of the clutch, what is the tension in the supporting cable?

Ans. 1198 lbs.

Problem 7. Fig. 221 represents a body weighing 30 pounds which rests

upon a 45° plane, connected by a cord to another weighing 50 pounds which

rests upon a 10° plane. If the coefficient of friction /= 0.25, determine if the

bodies will move. Determine T, Fi and F2.

Ans. T = 11.25 lbs. Fi = 5.3 lbs. F2 = 12.31 lbs.

Fig. 221 Fig. 222

Problem 8. Two blocks, A weighing 10 lbs. and B weighing 12 lbs.. Fig.

222, slide down a 30° plane in contact. They start from M with an initial

velocity of 5 feet per second and reach N, 100 feet from M, with a velocity of

50 feet per second. There is friction under B but none under A. Compute

the coefficient of friction, the pressure between the blocks, the time to move

from M to N and the velocity at the middle.

Ans. f = 0.244. P = 1.15 lbs. t = 3.635 sec. Vu, = 35.55 ft. per sec.

Problem 9. A ball is dropped from the ceiling of an elevator 8 feet high.

Find the time to drop to the floor (1) when the elevator is at rest; (2) when it
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is moving upward with a uniform velocity of 10 feet per second; (3) when it

is being accelerated upward at 10 feet per second per second; (4) when it is

being accelerated downward at 10 feet per second per second; (5) when it is

being accelerated downward at 32.2 feet per second per second.

Ans. (1) 0.704 sec. (3) 0.615 sec.
. (4) 0.849 sec.

Problem 10. Two blocks are connected by a cord as shown in Fig. 223.

The friction of the cord over the curved surface at A is 10 pounds. The
coefficient of friction under the 100-pound block is 0.1. Compute Ti, T^, and

the time required for the block to move 10 feet from rest.

Ans. Ti = 95.6 lbs. Tt = 105.6 lbs. <io = 3.93 sec.

FiQ. 223 Fig. 224

Problem 11. In Fig. 224, find the weight W necessary to give the 20-pound

body an acceleration of 12 feet per second per second if the coefficient of

friction under it is 0.4. (Neglect the mass of the pulleys and cord.)

Ans. TF = 67 lbs.

Problem 12. A oar starts from rest on a 1 per cent grade and runs down
under the influence of gravity for one mile. From there the track is level.

Train resistance is assumed constant at 12J pounds per ton. Find the velocity

of the car at the lower end of the grade, the time till it comes to rest and the

total distance traveled.

Ans. V = 35.7 ft. per sec. k = 296 sec. h = 177.5 sec. s = 8450 ft.

Problem 13. In the apparatus of Fig. 225 the coefficient of friction under

the blocks is 0.20. Find the acceleration of the blocks, the tension in the cord

and the time to move 20 feet from rest.

Ans. a = 9.22 ft. per sec. per sec. T = 96 lbs. I = 2.08 sec.

A B

Fig. 225 Fig. 226

Problem 14. The door shown in Fig. 226 weighs 200 pounds and is hung
from a track by means of wheels at A and B. The wheel at A is broken and
slides on the track, / being i. Find the amount of the force P applied as

shown to give the door an acceleration of 8 feet per second per second. Find

the reactions at A and B.

Ans. P = 84.7 lbs. Ay = 105 lbs. A^ = 35 lbs. B = 95 lbs.
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Problem 15. A block 1 foot square and six feet long stands on end on a

carriage with its sides parallel to the direction of motion. The coefficient of

friction/ = \. As the acceleration of the carriage is increased, will the block

tip or slide first, and for what value of the acceleration?

Ans. a = 5.36 ft. per sec. per sec.

Problem 16. A small wooden beam is deflected 1 inch by a weight of

li pounds. If a weight of 1 pound is placed on the beam and the beam is set

in vibration, find the time of one complete vibration. Ans. T = 0.261 sec.

Problem 17. A weight of 5 pounds is supported by a cantilever beam
spring, which is deflected 0.2 ft. below its neutral position. Find the time of

one vibration. Ans. T = 0.495 sec.

Problem 18. A weight of 10 pounds hung from a spiral spring makes 107

vibrations per minute. What is the scale of the spring?

Ans. 3.25 lbs. per inch.

Problem 19. What must be the scale of a spring on an 80,000-lb. car so

that if the car strikes a bumping post when moving with a velocity of 3 miles

per hour, the spring will not be compressed more than 2 inches?

Ans. 144,200 lbs. per inch.

Problem 20. A river is a half mile wide and flows at the rate of 8 miles per

hour. A motor boat which in still water could travel 12 miles per hour is

headed straight across. Where will it strike the opposite bank? What time

will be required? Ans. 1760 ft. below, t — 2 min. 30 sec.

Problem 21. In Problem 20, at what point would the boat strike if headed

30° up-stream? What time would be required?

Ans. 508 ft. below, i = 2 min. 53 sec.

Problem 22. A belt runs crossed between two 18-inch pulleys, 10 feet apart.

Find the relative velocity of the two parts of the belt where they cross when

the rim speed is 10 feet per second.

Ans. 19.77 ft. per sec. in direction of axes of puUeys.

Problem 23. A locomotive drive wheel is 6 feet in diameter and has a

15-inch crank. When the locomotive is running at 60 miles per hour and the

piston is at the forward end of the stroke, what is the absolutje velocity of the

crank pin? What is its absolute velocity 90° farther on?

Ans. 95.25 ft. per sec, 22° 40' below hor. 51.35 ft. per sec. hor. forward.

Problem 24. What is the absolute velocity of the top and

bottom points on the rim of the drive wheel of Problem 23?

What is their velocity relative to the frame of the loco-

motive?

Ans. 176 ft. per sec. 0. 88 ft. per sec. forward. 88 ft. per

sec. backward.

Problem 25. The three bodies. A, B and C, Fig. 227,

weigh 1 pound, 2 pounds and 3 pounds, respectively. If
_, _, .

they are supported in the position shown and then released ^ ^ ^
simultaneously, what will be the velocity of each body two

seconds later? (Neglect mass of cords and pulleys.)
ru:,.^^i

Ans. Vi = 26.4 ft. per sec. upward, v^ = 19.0 ft. per sec. downward,

Vi = 3.8 ft. per sec. downward.



CHAPTER VIII.

CURVILINEAR MOTION.

91. Velocity in Curvilinear Motion. The velocity of a particle

is its rate of motion, or the time rate of change of its position in

space. If the particle moves along a curved path, its motion is

said to be curvilinear. In this chapter only plane curvilinear

motion will be discussed.

If a particle moves along the curved path ABC, Fig. 228, its

velocity at any point in its path, as at A or B, is in the direction of

3 the path at that point. The velocity is

therefore changing constantly in direction

and may also be changing in amount. An
approximate value of the velocity of the

particle at any point may be obtained by taking the average velocity

over a small space which includes the point. If the arc AB is the

distance traveled in At time, the vector AB is the displacement in

AB
At time. Then the ratio -r^ gives the average velocity of the body

between A and B. If At becomes dt, approaching zero as a limit,

point B will approach point A as a limit, so the limiting direction

of the vector AB is the tangent at A, which gives the direction of

the instantaneous velocity at A. As point B approaches point A
the vector AB and the arc AB approach equality. If the length

ds
of the arc AB traversed in dt time is ds, -r: is the magnitude of the

instantaneous velocity, or the speed, at A.

92. Acceleration in Curvilinear Motion. Acceleration is the

time rate of change of velocity. In curvilinear motion the velocity

necessarily changes continually in direction

and may also change in amount. Let the ^v J'^'^'g

particle move along the curved path AiA, /'^ ^/
' ^„^^

Fig. 229(a), in time At, and let Vi and w ^< «^^ /^^^«
be the instantaneous velocities at Ai and

A, respectively. If from any point 0, Fig.

229(b), vector OBi is laid off equal and parallel to Wi, and vector
140
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OB is laid off equal and parallel to v, vector BiB represents the

total change in velocity, and -^ gives the average rate of change

of velocity, or acceleration, between Ai and A. The limiting value

of the average acceleration as A< becomes dt is the instantaneous

acceleration at A.

93. Tangential Acceleration and Normal Acceleration. It is

seen from Art. 92 that in general the acceleration is not in the

direction of the velocity of the particle. Since the direction of the

velocity is usually the direction of reference, the resultant accelera-

tion a is usually determined by means

of its two components, at and a„. The
component at is the tangential com-

ponent of the acceleration and is paral-

lel to the direction of the velocity. The
component «« is the normal component

of the acceleration and is perpendicular

to the direction of the velocity.

If Ai and A, Fig. 230(a), are consecu-

tive points in the path of the particle,

the distance AiA being the distance ds which is traversed

in time dt, then BiB, Fig. 230(b), is the change in velocity

Fig. 230

in time dt. The average acceleration is
BjB
dt

and is the instan-

taneous acceleration at A since dt approaches zero as a limit.

The acceleration --j— is resolved into its tangential and normal

at, parallel to the direction of the velocity at
, DB

components, -j—

A, and —\— = a„, normal to the direction of the velocity at A.

Since Ai and A are consecutive points in the path, DB = v ~ Vi =
dv, so

dy

dt'
a.t

It will be seen that this is the rate of change of speed at

point A.

In the limit,

BiD = vidd = vdd.
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Also,

Then

do = — and -j: = v.

p at

BiD
dt

' vdd

dt
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This normal force which the groove exerts upon the block is

called the constraining or centripetal force and is the resultant of

the external force system acting upon the body. The equal and

opposite inertia force with which the body resists a change of

direction of velocity is called the centrifugal force, since with

respect to the groove the result is the same as if a real force

were acting on the block. This inertia force is the normal

reversed effective force, which, if added to the external system,

will produce static conditions, since in this case there is no tangen-

tial acceleration. In Fig. 231(c), W and R are equal and balance.

F„ is an unbalanced force and causes acceleration toward the

center. If now, as in Art. 85, the reversed effective force, equal in

W v^
amount to and opposite in direction to the acceleration, be

added to the system acting upon the free body, the body will be

under static conditions and all static equations will apply.

The problem of the conical pendulum illustrates this method

better. In Fig. 232(a), A is a small weight hung by a cord or light

rod from the point on a vertical axis about
, _ j^

which it rotates in a horizontal plane. If

the speed is constant, the angle 6 is constant

and there is no force in the direction of the

motion. In Fig. 232(b), the weight is shown

as a free body with all the external forces /li-^

acting upon it, and in addition the reversed

effective force , acting opposite to the ac-

celeration. The problem is now one in statics, and the equations

T,Fx — and T^Fy = determine the unknown quantities. The
moment equation, SMo = 0, gives d and h in terms of the velocity.

W v"^— -h-Wr = Q.

-^ A
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Equation ZFy = gives

T X 0.866 = 5.

T = 5.77 lbs.

Equation SFi = gives

32.2'

V = 4.31 ft. per sec.

Or, by using equation 2JWo = 0,

gxi.732 = 5Xl.

V = 4.31 ft. per sec. as before.

5.77 X 0.5

EXAMPLE 2.

Find the superelevation e of the outer rail of a raUroad track of gage G on

a curve of radius r so that there is no resultant flange pressure when the car

has a speed of v feet per second.

Solution:— In Fig. 233(a), Ri and B2 are the pressures of the rails on the

wheels; R is their resultant; W is the weight of

the car and r is the radius of curvature of the track.

Since r is horizontal and the car is accelerated toward

W v'
the center, the reversed effective force must

g r

act horizontally through the center of gravity. The

conditions are now static conditions, so the three

forces must be in equilibrium and can be made to

e form a closed triangle of forces, Fig. 233(b). Then

W v'' i^— - -hW = tan9, or tanS =—
g r gr

For small angles the sine and the tangent are

approximately equal, so from Fig. 233(c),

e = G tan 6 = fG
gr

'

If 6 becomes large, so that the tangent and the sine cannot be considered

equal, the superelevation e is determined from e = G sin 8.

Problem 1. With dimensions and weight the same as in Example 1 above,

find the speed v necessary to keep the cord at an angle of 45°. What is the

corresponding tension T1 Solve also for 60°.

Ans. V = 6.75 ft. per sec. T = 7.07 lbs. v = 9.82 ft. per sec. T = 10 lbs.

Problem 2. Determine the superelevation of the outer rail of a track of

gage G = 4.9 feet (center to center of rail) on a curve of radius r = 2865 feet

to give zero resultant flange pressure at a speed of 30 'miles per hour.

Ans. e = 0.103 ft.

Problem 3. If a 100,000-lb. car has a speed of 60 miles per hour on the

curve with superelevation as determined in Problem 2, what is the resultant

flange pressure parallel to the ties? If the car is at rest on the curve, what is

the resultant flange pressure parallel to the ties? Ans. 6290 lbs. 2100 lbs.
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95. Simple Circular Pendulum. A simple circular pendulum

consists of a particle vibrating in tlie arc of a vertical circle under

the influence of gravity and some constraining radial force. The
ideal simple circular pendulum may be closely approximated by
means of a small heavy sphere at the end of a hght cord.

Let A, Fig. 234, be such a body suspended by cord OA, of length

I, and let distance along the arc be measured

from C, positive to the right. The only

force in the direction of motion is —W sin 0.

W
From F= — a,

9

at = —g sin 6.

vdv = ads = — g sin 9 ds.

The expression for t in terms of the integral

of sin 6ds is a complicated elhptic form, but

an approximate solution is comparatively

simple and for vibrations of small amplitude is very slightly in

error. For small values of 6, sin 6 = 6, approximately, so the

equations above become

Fig. 234

at = -g6 = -js

and vdv =

I since 6

sds.

~-i)

Let vo be the velocity at C and v the velocity at A.

Then / vdv = -j j sds.

V^ — Vo^ = —J S^.

Since v = when s = Sg,

Vo'^fsB''.

The insertion of this value of Vo^ in the equation above gives

V = V^T^
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Since v = -n,
at

fl ds

g s/sb^ — S^

If time is measured from the instant the pendulum is at C, moving

to the right, this becomes

ds

Jo '
ff "^O Vsr2 - ,g Jo \sb' — s'

s
y/isin- -i — j

"-m

To get the time required for the pendulum to move from C to B,

let s = sb- Then

n
2\ g'

To get the time required for the pendulum to move from C to 5
and back to C, let s = 0. Then

The time required for the pendulum to move from C to B is there-

fore the same as that to move from B to C.

Motion to the left of C exactly corresponds to motion to the

right of C, so the time of one complete period of vibration,

VI-

This equation for T is independent of 6, so the time of vibration is

independent of the amplitude for small values of 6.

It will be seen from the equation at = —j s, that for vibrations

of small amplitude the acceleration is proportional to the displace-

ment and so the motion is practically simple harmonic motion.

Since the ball of the pendulum is accelerated toward the center

with an acceleration j , the summation of forces normal to the path

gives

W v^

9 I
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P being the tension in the cord.

P = Wcose + — ^-

Problem 1. What is the length I of a simple pendulum which will vibrate

from one side to the other (B' to B, Fig. 234) in 1 second? Ans. 2.26 ft.

Problem 2. A mine cage is suspended from a cable 500 feet long. What
is the time of one complete oscillation? Ans. 24.75 sec.

Problem 3. A girder weighing 800 pounds is suspended from a cable 40

feet long. What horizontal force is necessary to pull it 6 feet out of its vertical

position? What is the tension in the cable as the girder is allowed to swing

back through its vertical position? Ans. 121 lbs. 818 lbs.

96. Velocity of a Body in a Vertical Curve.

A be a body of weight W moving along a

smooth vertical curve under the influence

of gravity, and let d be the angle, between

the horizontal and the tangent to the curve

at any point. The reaction N of the

smooth surface is normal to the path, so if pjQ 235

the resistance of the air is neglected the

only force in the direction of the motion is — IF sin 6, as in Art.

F
95, and (^ ^ Jr = —9 sin 6.

vdv = ads = —gsinO ds.

sin dds = dy,

so vdv = —gdy.

Let Vo be the velocity at point B. Then

vdv= -g
f

dy.

v^- Vo^= 2g(h-y).

It will be seen from this equation that if a body moves along a

frictionless path under the influence of gravity, the change in speed

is the same as if it fell freely through the vertical distance between

the two points. (See Equation 3, Art. 83.)

As in Art. 95, the normal constraining force P is given by

W 1?P= ±W cosB+~-'
g r

r being the radius of curvature of the path. The negative sign
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is used if the body is above a horizontal line through the center

of curvature.

EXAMPLE.

A body B weighing 2 pounds is rotating in a vertical circle at the end of a

cord 1 foot long, as shown in Fig. 236. If its

velocity at the bottom point is 15 feet per second,

what is its velocity at the top point A? What
is the tension T in the cord at that point? What
is the least velocity it can have at point A which

will keep it in its circular path?

Solution:— If the X axis is taken through B,

the value of h in the equation above becomes zero.

Then

"a' =Vi? -2gy = 225 - 128.8.
Vo=l5

Fig. 236
96.2

D^ = 9.81 ft. per sec.

When the body is at point A, the only forces acting upon it are its weight

and the tension in the cord, both downward. These produce the normal

2 ft. per sec. per sec.

W
acceleration a„ = —

r

From the equation F
9

a,

^ + 2 = 32:2X96.2.

T = 3.98 lbs.

Since the cord cannot have a compressive stress, the minimum value T can

have is zero. When T is zero, equation F = gives

2 = ^X^.
32.2 ^ 1

V = 5.67 ft. per sec.

This is the least velocity which will keep the body in its circular path.

Problem 1. If the body in Fig. 236 starts from rest at point C, what is its

velocity as it passes the 45° point? What is its velocity at the bottom point?

Ans. 6.75 ft. per sec. 8.03 ft. per sec.

Problem 2. If a body weighing 10 pounds is rotating in a vertical circle

at the end of a cord 10 feet long, what is the least velocity at the bottom which
will keep it in the circular path at the top? What is the tension in the cord
when the body is at the bottom? When it is 60° from the top? When it is

30° from the bottom? Ans. 40.1 ft. per sec. 60 lbs. 15 lbs. 56 lbs.

Problem 3. A body is thrown from a cliff 2000 feet high with a velocity of

200 feet per second. What will be the amount of its velocity as it strikes the

surface of the water below, if the air resistance is neglected?

Am. 411 ft. per sec.
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Problem 4. If in Fig. 237 the radius of the circle on the " loop the loop " is

6 feet, what must be the height h in order that the car will just pass the point

A without leaving the track? Neglect frictional resistance.

Ans. h = 15 ft.

Fig. 237

97. Motion of Projectile, Air Resistance Neglected. If a body
is impressed with an initial velocity and then moves freely through

the air under the influence of gravity, it is called a projectile. In

this discussion the resistance of the air will be neglected. For
projectiles with high velocities the error is considerable.

Let the projectile be discharged with an initial velocity of vo at

an angle a with the horizontal, as shown in Fig. 238. The initial

velocity vo may be resolved into its horizontal and vertical com-

ponents, Vo cos a and vo sin a, respectively. Since there is no

horizontal force acting upon the body, the horizontal velocity

remains unchanged throughout its motion.

Si = 0, Vx = Vo COS a,

X = Vot cos a.

In the vertical direction the force of gravity is acting continuously,

so the vertical component of the velocity is the same as that of a

body projected upward with an initial velocity of vo sin a. See

Art. 83.

ay = -g, Va = vosina -gt,

y = Votsina — | gt^
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To determine the time till the projectile reaches the highest

point in its path, let Vy = 0; then t = . The greatest

height h will be found by putting this value of t in the expression

for y. This gives

, Vg^ sin^ a

For varying values of a, the maximum value of h is evidently

given when sin^ a = 1, so a for maximum h = 90°.

The time the projectile is in the air until it reaches the same

level again is obtained by letting y = 0. This gives

2 vo sin a
t

g

which is twice the time required for it to reach the top point in its

path.

The range d, the horizontal distance through which it travels

until it reaches the same level again, is given by the product of

the time t just obtained and the constant horizontal velocity.

J 2 Vo^ cos a sin a Vo'' . _
d = = — sin 2 a.

g g

For varying values of a it is evident that d will be a maximum
when sin 2 a = 1. Then 2 a = 90° and a = 45°.

The amount of the velocity at any point in the path is given by

V = Vy^2 + Vy^ = Vwo^ - 2 gy.

The direction of the velocity at any point in the path is the same
as the tangent to the path, and is given by

tan0 = ?^,

e being the angle the tangent to the curve makes with the hori-

zontal.

The equation of the path in terms of x and y is obtained by
eliminating t between the equations for x and y.

cix^
y — xtana

2 Wo^ cos^ a

This is the equation of a parabola with its axis vertical.
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EXAMPLE 1.

A projectile is discharged with a velocity of 200 feet per second at an angle

of 30° with the horizontal. Determine the maximum height, the time until

it returns to the same level, and the range. Determine also the velocity at

the end of 2 seconds.

Solution:— The vertical component of the velocity is Vq sin a = 100 ft.

per sec. The horizontal component of the velocity is Vg cos a = 173.2 ft. per

sec.

. Wo^ sin2 a 100 X 100

2g 2 X 32.2
= 155 ft.

The time until it reaches the same level again is — = ^^^ = 6.21 sec.

The range d is given by the product of the horizontal velocity and the time.

d = 173.2 X 6.21 = 1075 ft.

The vertical component of the velocity at the end of 2 seconds is given by

Vy = vo sin a — gt = 100 — 64.4 = 35.6 ft. per sec.

The horizontal velocity is constant, 173.2 ft. per sec. The resultant velocity

V = y/vj- + v^ = 176.8 ft. per sec. The angle with the horizontal is given

by its tangent
„ IK fi

= 0.2057. 9 = 11° 37'.
Vy ^ 35.6

Va: 173.2

EXAMPLE 2.

From a tower 200 feet high a stone is thrown downward at an angle of 45°

with the horizontal, with a velocity of 80 feet per second. How far away from

the tower does it strike the ground and what is the time required?

Solution:— The horizontal component of the velocity is Vo cos a = 56.56

ft. per sec. The vertical component of the velocity is vo sin a = 56.56 ft. per

sec. downward. The vertical motion is the same as that of a body projected

vertically downward with an initial velocity of 56.56 ft. per sec. From equa-

tion (2), Art. 83,

200 = 56.56 1 + 16.1 1\

t = 2.18 sec.

Since the horizontal velocity is constant the horizontal distance traveled in

2.18 seconds is

xi = 56.56 X2.18 = 123.4 ft.

Problem 1. A shot is fired at an angle of 60° with the horizontal, with a

velocity of 500 feet per second. Find the height and the range.

Ans. ;» = 2911 ft. d = 6725 ft.

Problem 2. What is the maximum height and the maximum range theo-

retically possible for a projectile with a muzzle velocity of 2000 feet per second?

Ans. h = 11.78 miles, d = 23.56 miles.

Problem 3. A gun with a barrel 3 feet long shoots a bullet with a muzzle

velocity of 600 feet per second. When shooting at a target 1000 feet distant,

to what height should the rear sight be raised? Ans. 1.615 inches.
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GENERAL PROBLEMS.

Problem 1. A 10-pound weight at the end of a 3-foot cord revolves about

a vertical axis as a conical pendulum. What is the tension in the cord and the

speed of rotation if 9 = 30"? Ans. T = 11.55 lbs. n = 5.28 ft. per sec.

Problem 2. A cast iron governor ball 4 inches in diameter has an arm

15 inches long. Neglecting the weight of the arm, find the tension and the

speed if 9 = 75°. Ans. T = 33.76 lbs. v = 12.04 ft. per sec.

Problem 3. A car is moving on a horizontal track around a curve of 600

feet radius with a speed of 30 miles per hour. A weight of 40 pounds is sus-

pended from the ceiling by a cord 3 feet long. What is the tension in the cord,

the angle with the vertical and the horizontal displacement?

Ans. 40.2 lbs. 5° 42'. 3.6 inches.

Problem 4. What superelevation of the outer rail would be necessary in

Problem 3 in order to make the weight hang parallel to the sides of the car?

Ans. 5.88 in.

Problem 5. A standard gage interurban railway track has a curve of 100

feet radius. What should be the superelevation of the outer rail so that a car

moving with a speed of 10 miles per hour wUl have zero resultant flange

pressure? Ans. 3.92 in.

Problem 6. In a, fog, a car whose center of gravity was 6 feet above the

track struck the curve of the preceding problem while moving with a speed of

30 miles per hour. What happened? (Solve graphically.)

Problem 7. At what angle must an automobile speedway be banked on a

curve of 250 feet radius for a speed of 60 miles per hour so that there is no side

thrust on the wheels? Ans. 43° 50'.

Problem 8. If the coeflScient of friction between the wheels and the track

in Problem 7 is J, to what angle can the banking be reduced before the wheels

skid on the curve? Ans. 25° 30'.

Problem 9. A common swing 20 feet high is designed for a static load of

400 pounds with a factor of safety of 4. If two boys, each weighing 100 pounds,

swing up to the horizontal on each side, what is the factor of safety?

Ans. 2f.

Problem 10. If the swing of Problem 9 is vibrating 60° on each side of the

vertical, what wiU be the total tension in the supporting ropes?

Ans. 400 lbs.

Problem 11. If the swing of Problem 9 vibrates through an angle of 10°.

how many complete vibrations are made per minute? Ans. 12.12.

Problem 12. A ball at the end of a cord 2 feet long is swinging in a complete

vertical circle with just enough velocity to keep it in the circle at the top. If

it is released from the cord when it is at the top point, where will it strike the

ground 4 feet below the center of the circle? Ans. 4.89 feet away.
Problem 13. If the ball of Problem 12 is released 45° later, where will it

strike the ground? Ans. 4.27 feet from vertical through center.

Problem 14. The muzzle velocity of a projectile is 1200 feet per second

and the distance of the target is 3 miles. What must be the angle of elevation

of the gun? Ans. 10° 22'.

Problem 16. From a car moving with a speed of 60 miles per hour a stone

is thrown horizontally at right angles to the direction of the car with a velocity
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of 100 feet per second. Where will it strike the ground and with what velocity

if the car is 10 feet above the level of the ground?

Ans. 78.8 ft. from track, 69.4 ft. forward, v = 135.6 ft. per sec.

Problem 16. A small blocli slides freely down the quadrant shown in

Fig. 239. Determine the distance Xt, the equation of the path BC and the

velocity at C.

Ans. Xi = 10.95 ft. y = -0.0834 x^. Vc = 28.9 ft. per sec.

Problem 17. While blasting out a concrete foundation the most distant

pieces fell 800 feet away. What was their initial velocity?

Ans. 160 ft. per sec.

Fia. 239 Fig. 240

Problem 18. If a target is 1000 feet distant horizontally and is 200 feet

higher than the gun, what angle of elevation is necessary if the muzzle velocity

is 800 feet per second? Ans. a = 12° 50'.

Problem 19. A block starts from rest at the top of a sphere 4 feet in diam-

eter, Fig. 240, and slides without friction to point 0' where it leaves the surface

of the sphere. Locate this point. Find also the equation of the path of the

block after leaving the surface, and the distance from the sphere to the point

where the block strikes the plane upon which the sphere is resting.

Ans. = 48° 10'. y = 1.118 x - 0.843 x\ a + xi = 2.92 ft.

Fig. 241

Problem 20. The height of the starting point for the car on the " loop the

loop," Fig. 241, is 30 feet above the bottom of the loop. What is the velocity

of the car at the top of the loop? What is the pressure against the top if the

man and car weigh 300 pounds? Ans. 35.85 ft. per sec. 2100 lbs.

Problem 21. In Problem 20, if the track from the bottom of the loop to the

right rises 2 feet in a distance of 10 feet, how wide a gap, mn, can be leaped?

Ans. 21.4 ft.



CHAPTER IX.

ROTATION.

98. Angular Displacement. If a particle describes a curvilin-

ear motion with a constant radius r, the motion is called rotation

and the angle described by the radius is called angular displace-

ment. The unit of angular displacement is the radian. The

radian is the angle at the center subtended by an arc equal in

length to the radius. In Fig. 242, the length of the arc AB is equal

g to the radius r, so the angle AOB is one radian.

Let the length of the arc ABC be s. Since any

angle is proportional to its subtending arc,

or

Fig. 242

e
r

s = re.

There are 27r radians subtended by a complete circumference.

^ = 57°.3. (MoreHence 2 ?r radians = 360° and 1 radian

accurately 57°.29578.)

Angular displacement in the counterclockwise direction is

considered to be positive, that in the clockwise direction

negative.

Problem 1. Reduce to radians: 45°; 100°; 900°; 4 revolutions.

Ans. 0.7854. 1.746. 15.71 25.13.

Problem 2. Reduce to degrees: 2 radians; -ir radians.

99. Angular Velocity. Angular velocity is the time rate of

angular displacement. If equal angular displacements occur in

equal intervals of time, the angular velocity is constant. Let co

represent the angular velocity in radians per second. Then if fl

represents the angular displacement in time t, the rate of angular

displacement, or angular velocity, is given by

B
w = —

•

t

154
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If the angular velocity varies, the average angular velocity for

any small interval of time A< is given by

Ae

A*

The instantaneous angular velocity is given by

de

Angular velocity is commonly given in revolutions per minute

(r.p.m.), which must usually be reduced to radians per second for

the solution of problems.

1 r.p.m. = 777; rev. per sec. = -p^ rad. per sec.'^ 60 60

Since angular velocity involves only magnitude and direction, it

is a vector quantity and may be represented graphically by a

vector. In the same way as for vectors of couples, the vector is

drawn parallel to the axis of rotation with the arrow pointing in the

direction from which the rotation appears counterclockwise or

positive. Vectors representing angular velocity may be combined

graphically into their resultant vector which represents the result-

ant velocity. Conversely, the vector representing an angular

velocity may be resolved into component vectors.

The relation between the linear and the angular velocities of a

point moving in a circular path is obtained as follows.

By definition, v = ^n. Since s = r6, v = -j-. But -t:=io, so
•' '

dt
'

dt dt
'

V = rw.

Problem 1. A pulley 40 inches in diameter rotates at 120 r.p.m. What is

its angular velocity in radians per second and what is the speed of the belt in

feet per second? Ans. 12.57 rad. per sec. 20.94 ft. per sec.

Problem 2. The smaller of two friction wheels is 3 inches in diameter and

the larger is 24 inches in diameter. If the smaller wheel rotates at 30 r.p.m.,

what is the angular velocity of the larger wlieel? What is the .speed of the rim?

Ans. a = 0.3927 rad. per sec. v = 0.3927 ft. per sec.

100. Angular Acceleration. Angular acceleration is the time

rate of change of angular velocity. If the angular velocity is con-

stant, the angular acceleration is zero. If the angular velocity

changes by equal amounts in equal time intervals, the angular

acceleration is constant. If the angular velocity changes by
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unequal amounts in equal time intervals, the angular acceleration

is variable.

If the angular acceleration is constant, its value may be ob-

tained by dividing the total change in angular velocity by the

time t in which the change was made. If a represents the angular

acceleration and w the change in angular velocity,

CO
« = -•

If the angular acceleration is variable, its instantaneous value at

any point is given by

""' dt~ df'

By eliminating dt from the two equations, co = -3: and a = -171

there is obtained the equation

CO dci) = a d6.

The unit of angular acceleration is the radian per second per

second. Like angular velocity, angular acceleration is a vector

quantity and may be represented graphically by a vector. Angular

acceleration has sign, counterclockwise acceleration being usually

taken as positive and clockwise acceleration negative.

The relation between tangential and angular acceleration is

obtained as follows. By Art. 93, «( = tt • Since v = ru, dv = r dw

, rdio „. dw
and at = -rr* bince -rr = a,

dt dt

&t= ra.

By Art. 93, a„ = — • Since v = rw,

a„ = ro)^.

It is seen that the tangential acceleration varies directly with the

radius and with the angular acceleration. The normal accelera-

tion varies with the radius and with the square of the angular

velocity. It is independent of the angular acceleration.

101. Simple Harmonic Motion: Auxiliary Circle Method.
The equations of simple harmonic motion may be derived very

easily by means of the Auxiliary Circle. If a point describes a

circular motion with uniform speed, the motion of its projection

upon a diameter is simple harmonic motion, as will be shown later.
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Let P, Fig. 243, be the point, moving counterclockwise at oj

radians per second with an angular displacement of d from A. If

time is measured from the instant when
P is at point A, 6 = cat. Let the tan-

gential velocity of the point P be t'o.

Let P' be the projection of P upon the

horizontal diameter. The velocity of

P' at is evidently the same as that

of P at A, since both are moving hori-

zontally. At any point in its path,

the velocity v of P' is equal to the

horizontal component of the velocity

of P in its corresponding position, or

V = Vo cos (Ot.

Since the point P is moving around the circle with uniform speed,

its only acceleration is toward the center and is a„ = roj^, repre-

sented by the vector PC. The acceleration a of the point P' is

along its path and is equal to the horizontal component PE of the

acceleration of point P This horizontal component is equal to

an sin d = ru^ X - = co^s. The direction is negative, so

a = — (D^s.

Since co^ is a constant, a is proportional to the displacement s, hence

the motion of P' is simple harmonic motion.

By squaring the first equation above,

V^ = Vt? COS^ bit.

g2

Since cos^ oit = 1 — sin^oji =1—5,

From Fig. 243,

Solving for t,

= j;o^ ( 1 —-A = V(^ — wV.

s = r sin wt.

t = - sin-i - •

CO r

In these equations, t is the time from position 0. From the last

equation the time from to 5 is evidently

1
t = - sin-i 1 = ^

—
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If K is substituted for o^ the formulas of this article become

identical with those of Art. 87, and as was there shown, the period

is four times the time from to B.

T = —

.

If the crank pin of a reciprocating engine rotated with uniform

speed, the piston would have simple harmonic motion if the con-

necting rod were of infinite length, or if the slotted slider shown in

Fig. 244 were used.

Fig. 244

EXAMPLE.

In the mechanism shown in Fig. 244, let r = 1 foot and let the crank pin

be rotating at 120 r.p.m. Determine a, T, vo and the maximum acceleration

of the piston. If the weight of the piston and slider is 200 pounds and the

steam pressure F is zero, what is the pressure Fi of the crank pin on the slider

when the piston is at its end piston?

Solution:— 120 r.p.m. = 2 rev. per sec. = 4ir rad. per sec.

M = 4 TT = 12.57 rad. per sec.

_, 25r 1
T = — = ^ sec.

Vo = ra = 12.57 ft. per sec.

Maximum a = —ah- = —158 ft. per sec. per sec.

At the end position the only force acting upon the piston and slider in the

direction of its motion is the pressure of the crank pin Fi. The acceleration is

toward the left, so the force Fi must act toward the left. From F = Ma,

200
Fi

32.2
X 158 = 981 lbs.

Problem 1. In Fig. 244 let the angle POA of the crank with the vertical

radius OA be 30° and let all other data be the same as in the Example above.

Determine the velocity and the acceleration of the piston. Determine the time

since it was in its middle position. If the steam pressure F = 500 pounds,

what is the crank pin pressure Fi"!

Ans. V = 10.88 ft. per sec. a = — 79 ft. per sec. per sec. I = ^ sec.

Fi = 991 lbs.
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Problem 2. With the same data as in the Example above, determine the

velocity and acceleration of the piston and its distance from the right end of

the cylinder 0.15 second after passing the middle position moving to the right.

If the steam pressure is 1500 pounds (to the left) , what is the crank pin pressure?

Ans. V = 3.88 ft. per sec. o = 150.3 ft. per sec. per sec. Fi = 566 lbs.

to right.

102. Constant Angular Acceleration. In Art. 82 the following

expressions were derived for the linear motion of a particle with

constant acceleration.

V = vo + at. (1)

s = iiv+Vo)t = Vot + i aP. (2)

v^ = wo^ + 2 as. (3)

At any instant these equations apply also to the tangential motion

of a particle moving in a circle with constant tangential accelera-

tion. In the formulas above, a becomes at. From Arts. 98, 99

and 100,

6 = -, cii = - and a = —
r r r

If equations (1) and (2) are divided by r and simplified, they be-

come
0) = Wo + at. (4)

e = i (« + <oo) t = Wot -h i at2. (5)

Similarly, if equation (3) is divided by r^, it becomes

w^ = Wo' -t- 2 ae. (6)

Problem 1. A flywheel is brought from rest up to a speed of 60 r.p.m. in

J minute. What is the average angular acceleration a, and the number of

revolutions required? What is the velocity at the end of 15 seconds?

Ans. a — 0.2094 rad. per sec. per sec. 15 rev. oi^ = 3.14 rad. per sec.

Problem 2. If the flywheel of Problem 1 is 12 feet in diameter, what is the

tangential velocity and acceleration of a point on the rim? What is the nor-

mal acceleration at the instant full speed is attained?

Ans. V = 37.7 ft. per sec. at = 1.256 ft. per sec. per sec. a„ = 237 ft. per

sec. per sec.

Problem 3. A pulley which is rotating at 120 r.p.m. comes to rest under the

action of friction in 3 minutes. What is the angular acceleration and the total

number of revolutions made?
Ans. a = 0.0698 rad. per sec. per sec. 180 rev.

Problem 4. The rim of a 33-inch wheel on a brake shoe testing machine

has a speed of 60 miles per hour when the brake is dropped. It comes to rest

when the rim has traveled a tangential distance of 440 feet. What is the

angular acceleration and the number of revolutions?

Ans. a = 6.4 rad. per sec. per sec. 50.9 rev.
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103. Variable Angular Acceleration. If in a circular motion

the angular acceleration a is variable, its law of variation must be

known in order to obtain the equations of motion. In certain

physical problems the acceleration is zero in the mid-position and

increases directly with the angular displacement d to either side

of this position and is oppositely directed. Then a = —Kd, K
being a constant. Let the angular velocity at the mid-position be

wq. Since o dci> = a dd,

cjdw = -K
f

ede.
OJO I'D

(0 = V«o' - Ke^.

do
Since co = -37, this equation becomes

dt=
''

Vcoo' - KO^

If time is measured from the instant the body is in the mid-

position moving positively, the limits of t are and t, and of 6 are

and e.

dd

Jo Jo

1 . ,eVK
t = —7= sm-i

vK «o

By transposing,

e = -^ sin y/Kt.

From the above equations it will be seen that the motion is periodic.

(See Equation (2), Art. 87.) These equations apply to the motion

of a torsion balance and approximately to that of a simple pendu-

lum with vibrations of small amplitude.

Problem 1. The balance wheel of a watch is 5 inch in diameter and oscil-

lates 45° to either side of its mid-position. The time of one complete oscilla-

tion is I second. What is its greatest angular acceleration, its greatest angular

velocity, its greatest tangential acceleration and its greatest normal accelera-

tion?

Ans. a = 124 rad. per sec. per sec. uo = 9.87 rad. per sec. at = 2.58 ft.

per sec. per sec. On = 2.03 ft. per sec. per sec.

104. Effective Forces on a Rotating Body. Let Fig. 245

represent any rotating body and P any particle of mass dM, at a
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Fig. 245

radial distance p from the axis of rotation, 0. Then if the body

has an angular velocity <a and an angular acceleration a, the tan-

gential and normal components of the accel-

eration a are at = pa and a„ = pco^ respectively

for each dM. The effective force for each

dM is given by its two components, dMpa
tangential to its path and dMpu^ normal to

its path.

It will be seen that for equal dM's, these tangential and normal

effective forces vary with the radius p, both in amount and

direction. The tangential effective forces vary directly with p

and are always at right angles to it in the direction of the angular

acceleration. The normal effective forces vary directly with p

and are always directed along the radius toward the axis.

105. Moment of Tangential Effective Forces. In Fig. 246 let

be the axis of rotation, C the center of gravity, F the resultant

of all the external forces except the reac-

tion at the axis 0, and d the distance from

the axis of rotation to the line of action of

force F. P is any particle of mass dM,
whose tangential effective force is dMpa

Fig. 246 as shown. (Since rotation alone is being

considered, forces parallel to the axis of rotation are neglected.)

By the principle of Art. 85 the impressed forces would be in

equilibrium with the effective forces reversed. Since neither the

normal effective forces (not shown) nor the reaction at (not

shown) have any moment about the axis 0, the moment of the tan-

gential effective forces must be equal to the moment of the im-

pressed forces, or

Fd = CdMp^a.

Since at any instant all particles of the body have the same value

of a

Fd = a CdMp'.

The value of / dMp^ if integrated between the proper limits is /,

the moment of inertia of the body with respect to the axis of

rotation. Then
Fd = la.
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The analogy of this equation to the equation F = Ma was dis-

cussed in the footnote to Art. 66.

It is convenient sometimes to consider the moment la as equiv-

alent to the moment of a single force Mra (the total mass X tan-

gential acceleration of mass center). Its moment arm is given by

la ^ M¥a ^ ¥
Mfa ~ Mfa " f

'

Then a force Mfa acting tangentially through point Q, Fig. 246,

distant — from the axis has a moment about the axis equivalent
r

to that of the actual tangential system of effective forces. It is

evident from the discussion above that if the effective tangential

force Mfa were reversed in direction and made to act tangentially

through point Q, its moment would balance the accelerating mo-

ment of the external system of forces and would produce a static

condition of rotation.

If a body rotates about its center of gravity so that points

and C coincide, r = 0, so ^r- = infinity. This shows that in this

case the equivalent moment can be given only by a couple of

moment la, and not by a single force.

EXAMPLE 1.

A slender rod of length I is released from a horizontal position and allowed

to rotate under the influence of gravity alone about a horizontal axis through

one end, perpendicular to the axis of the rod. Determine the amount and
position of the tangential effective force Mra at the instant of starting.

Solution:— Let W be the weight of the rod. From the equation

Fd = la,

Wl WP

3<7
" = 27-

^ = ? ^ 1 = ? 7

r 3 2 3

EXAMPLE 2.

Fig. 247 represents a cast iron cylinder 3 feet in diameter and 6 inches

thick, free to rotate about its geometric axis 0. If a force of 10 pounds is
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applied to a cord wrapped around the cylinder, what is

the angular acceleration, the tangential acceleration, the

angular velocity after 5 seconds and the number of

revolutions it has turned? Neglect the axle friction.

Solution: — The forces acting upon the cylinder are

its weight, the reactions of the supports at 0, and the

force F. The first two forces have no moment about the

geometric axis, so the moment

Fd = 10 X1.5 = 15 ft. lbs.

h of the cyhnder = | Mr' = 55.6.

Fd = la.

15 = 55.6 a.

a = 0.27 rad. per sec. per sec.

at = ra = 0.405 ft. per sec. per sec.

CO = at, so U6 = 1.35 rad. per sec.

e = iat' = 3.375 rad. in 5 sec.

3.375 -^ 2 TT = 0.537 rev. in 5 sec.

EXAMPLE 3.

Instead of a force F = 10 lbs., let a weight of 10 lbs. be hung from the cord

in Example 2. Determine the angular acceleration and the tension T in the

cord.

Solution:— First, let the cylinder be considered as the free body.

The equation Fd = la gives T X 1.5 = 55.6 a.

This equation contains two unknown quantities, so the equation of motion of

the suspended weight must be written.

Since a. of the weight = oj of the rim of the cylinder, and at = ra,

a = 0.266 rad. per sec. per sec.

T = 9.86 lbs.

Problem 1. A steel cylinder 2 feet in diameter and 2 inches thick is fastened

firmly to an axle 2 inches in diameter. A weight of 50 pounds is hung from a

cord wrapped around the axle. Find a and T, neglecting the mass of the pro-

truding parts of the axle and also the axle friction.

Ans. a = 1.045 rad. per sec. per sec. T — 49.85 lbs.

Problem 2. A cast iron flywheel 4 feet in diameter has a rim 2 inches thick

and 12 inches wide. To its axle is fastened a 20-inch pulley around which a

cord passes. If a 100-pound weight is hanging from the end of the cord, what

is the angular acceleration of the flywheel and what is the tension in the cord?

Neglect the mass of the axle, hub, spokes and small pulley, also axle friction.

Ans. a = 0.785 rad. per sec. per sec. T = 97.9 lbs.
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Problem 3. A cast iron cylinder 3 feet in diameter and 2 feet long is

rotating at 360 r.p.m. A brake which rubs against the curved surface of the

cylinder has a normal pressure on it of 500 pounds. The coefficient of friction

between the brake and the cylinder is / = 0.2. If the friction on the shaft

is neglected, what is the time required for the brake to bring the cylinder to

rest? Through how many revolutions will it turn?

Ans. 56 sec. 168 rev.

106. Resultant of Normal Effective Forces. As stated in

Art. 104 the normal effective forces for the particles of a rotating

body at any instant are directly proportional to their radii and act

toward the axis of rotation. (See Fig. 245.) In general, the re-

sultant of these normal forces for the whole body is a force and a

couple, as was shown in Art. 39. The solution of this problem in

the general case is involved and difficult, for usually the resultant

force does not act through the center of gravity, and the resultant

couple is hard to obtain since it involves the product of inertia of

the body. Fortunately, nearly all engineering problems in rota-

tion come under a few special cases in which the value of the

couple is zero or is easily obtained and the resultant force is

easily located. Three of these cases will be discussed.

Case 1. If a body has a plane of symmetry and rotates about any

axis normal to this plane, the resultant normal effective force acts

radially through the center of gravity and is equal to Mru^.

Let Fig. 248(a) represent a body which has a plane of symmetry
QMNP Let the axis OZ normal to the plane of symmetry be the

axis of rotation, and let the X axis be taken through the center of

gravity C. Let AB be any elementary prism of mass dM, par-

allel to the axis OZ. Since each part of the prism has the same

normal acceleration o„ = poj^, the resultant of the normal effective

forces for the prism AB is dMpcS' acting in the plane of symmetry

toward the axis OZ. Fig. 248(b) shows the section cut by the

plane of symmetry. The X component of the force dMpu^ is
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dMpco^cose = dMpu^- = dMco% and for the entire body 27^^, =

0)2 / dMx = Mxu' = Mrco2. The Y component of the force dMpo}^

is dMpoy' sin d = dMpw^- = dMoy'y, and for the entire body, SF„ =

0)2 / dMy = Myui^ = 0, since ^ = 0. Hence the resultant of all

the normal effective forces is Mrco'^ acting in the plane of sym-
metry parallel to the X axis. Since the normal effective forces all

pass through the axis OZ they have no moment about OZ; hence

their resultant can have no moment about OZ and must therefore

lie in the axis OX through the center of gravity.

If the axis OZ passes through the center of gravity, f = 0, so

the resultant normal effective force Mfoi^ = 0.

Case 2. If a body has a line of symmetry and rotates about an
axis parallel to this line, the resultant normal effective force acts

through the center of gravity and is equal to Mfcc^.

In Fig. 249, let AB be a line of symmetry of the body shown and
let the body be rotating about axis OZ parallel to AB. Consider

the plate EF of thickness dz and mass dM,
whose plane is normal to the axis OZ. By
Case 1, the resultant normal effective force

on plate EF is dMroi^, acting through the

center of gravity of the plate toward the axis

OZ. On each similar plate there is a corre-

sponding normal effective force directed from o -

line AB normal to axis OZ, and each force is

proportional to the mass of its plate. As ^°' '^^

shown in the last paragraph of Art. 43, the resultant of this

system of parallel forces acts through the center of gravity of the

Mrtw% smce r andbody. Its amount is equal to 2 dMrw^

are constants.

If the axis OZ coincides with the line of symmetry, r = and

the resultant normal effective force Mfoi"^ = 0.

Case 3. If a slender prismatic rod of length I is rotating about

an axis through one end at any angle 6 with the axis, the resultant

normal effective force is equal to Mfu^ and acts through a point

distant J I from the paint of support.
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In Fig. 250, let OB be the rod of length I with its center of

gravity at C, and let it be rotating about the axis OA with

angular velocity co. Let the rod be divided into

equal elementary parts. The normal effective

force on any elementary mass dm is equal to dMfno',

p being the radial distance of the mass dM. These

forces are proportional to the radial distances of

the masses and are acting normal to the axis

AO. Since o>^ is the same for all elements, the

resultant of all the effective forces becomes ca^

/.dMp = Mfo^ and acts at point Q, distant 1 1 from 0. (See Art.

48.) If the axis does not pass through the end of the rod, the

part on each side of the axis is treated independently.

Problem 1. A steel cone has the following dimenaions: height fe = 4

inches; radius of base r = 2 inches. If it is rotating at 200 r.p.m. about an

axis parallel to its geometric axis and distant 6 inches from it, what is the

resultant normal effective force? Ans. 32.4 lbs.

Problem 2. If the cone of Problem 1 is rotating about a diameter of the

base at 120 r.p.m., what is the resultant normal effective force?

Am. 1.94 lbs.

Problem 3. A cast iron disk 8 inches in diameter and 2 inches thick rotates

about an element of the cylindrical surface. Compute the normal effective

force for a speed of 60 r.p.m. Ans. 10.7 lbs.

Problem 4. A steel rod 1 inch in diameter and 18 inches long is rotating

about a vertical axis through one end. If it stands at an angle of 45° with the

axis, at what speed is it rotating? Ans. 64.5 r.p.m.

107. Reactions of Supports of Rotating Bodies. For any

given problem in rotation, the unknown reactions of the supports

may be determined by the principle of Art. 85. That is, if in

addition to the actual impressed forces there be added the reversed

effective forces, the body will be under static conditions and all

static equations of equilibrium will be true. The method of solu-

tion is as follows: Draw the free body diagram and show all im-

pressed forces, known and unknown. (Unknown reactions of

supports are commonly replaced by axial, normal and tangential

components.) Determine the angular acceleration and velocity

from the given conditions. Determine the normal and tangential

components of the effective force and apply these reversed. These

1^
components act through a point at a distance — from the axis.

f
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Solve as many equations of equilibrium as are necessary to deter-

mine all of the unknown quantities.

If r = 0, Mru^ = and Mfa = 0, so there are no kinetic re-

actions of the supports for Cases 1 and 2, but the reactions are

the same as when the body is at rest. In Case 3, if the axis

passes through the center of gravity of the rod the reaction of

the support becomes a couple.

EXAMPLE 1.

Fig. 251(a) represents a steel disk 1 foot in diameter and 1 inch thick, free

to rotate about an element through 0. If it starts from rest with C vertically

above O and rotates under the influence of gravity alone, find the normal and
tangential components of the hinge reaction at when 9 = 90°.

Fia. 251

Solutim:— r = \ ft.; W = 32.07 lbs.; M = 0.995; Ic = \ Mr'' = 0.124;

/„ = /„+ Mr'' = 0.373.

The equation of motion is

Wf sin 6 = ha.

When 6 = 90°, sin 6 = 1 and this equation becomes

32.07 X 0.5 = 0.373 a.

a = 43 rad. per sec. per sec.

To obtain w, solve for a in the equation of motion and substitute its value

in the expression add = adoi and integrate between the proper limits.

Wf - Wfcoae = ilw''.

When 6 = 90°, cos 9=0 and this equation becomes

32.07 X 0.5 = 0.5 X 0.373 w'.

u = 9.27 rad. per sec.

Mfa = 0.995 X 0.5 X 43 = 21.4 lbs.

Mfw= = 0.995 X 0.5 X 86 = 42.8 lbs.

f Mr
Fig. 251(b) shows the free body diagram in the position asked for, with the

effective forces reversed, and the hinge reaction represented by its normal and

tangential components. From the static equations of equiUbrium,

SFx = 0, so B„ = 42.8 lbs.

SFy = 0, so Bt = 32.07 - 21.4 = 10.67 lbs.

= 0.75 ft. = distance OQ.
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EXAMPLE 2.

A vertical axle MN 4 feet long carries a horizontal arm AB 2 feet long which

is attached to the axle 1 foot from the top as shown in Fig. 252. On the end

of the horizontal arm is a cast iron sphere 6 inches

in diameter. The axle is rotated positively by a

pull of 10 lbs. on the cord which passes around

the pulley C. If the sphere starts from rest in the

XZ plane and the pull is parallel to the X axis,

determine the reactions due to the sphere after one

revolution.

Solution:— TF = | ttt' X 450 = 29.45 lbs.

A:2M Imn = 3.679. = 2.013 ft.: 0.914.

e = 2 TT radians = 360°.

Equation Pd = la gives

10 X 0.5 = 3.679 a.

a = 1.36 rad. per sec. per sec.

Since the acceleration is constant,

w = y/2cS = 4.135 rad. per sec. after 1 revolution.

Mia = 0.914 X 2 X 1.36 = 2.486 lbs.

M™2 = 0.914 X 2 X 17.1 = 31.25 lbs.

The latter two forces are added reversed in Fig. 252, so the system as shown is

in equihbrium.

Equation Zfz = gives

Rz = W = 29.45 lbs.

Equation 2Af;j = gives

"r^' X 4 - 29.45 X 2 - 31.25 X 3 - 10 X 1 = 0.

Rx' = 40.66 lbs.

Equation 2Pi = gives

Rx = 0.59 lbs.

Equation 2Af^ = gives

'Ry' X 4 - 2.486 X 3 = 0.

Ry' = 1.86 lbs.

Equation ZFy = gives

Ry = 0.62 lbs.

Problem 1. With the same general data as in Example 1 above, compute
the normal and tangential components of the reaction when 8 = 45°.

Ans. Rn = 10.15 lbs. Rt = 7.54 lbs.

Problem 2. In Problem 1 compute the vertical and horizontal components
of the reaction when 8 = 135°. Ans. Ry = 73 lbs. R^ = 62.3 lbs.

Problem 3. In Problem 1 compute the normal and tangential components
of the reaction when 8 = 180°. Ans. Rn = 117.6 lbs. Rt = 0.

Problem 4. With the same general data as in Example 2 above, compute
the reactions when the sphere has rotated one-half revolution from rest.

Ans. iJx = 18.331bs. Rx' = -23.93 lbs. Ry= -0.621bs. Ry'= -1.861bs.
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Problem 5. With the same general data as in Example 2 above, compute

the reactions when the sphere has rotated one second from rest.

Ans. = 0.68 rad. R^ = -2.9 lbs. R^' = 17.1 lbs. iJ„ = 9.2 lbs. Ry' =
-9.44 lbs.

108. Compound Pendulum. Any physical body suspended

from a horizontal axis not passing through the center of gravity

and free to rotate under the influence of gravity and the reaction

of the support is called a compound pendulum. The
student should refer again to Art. 95, Simple Circular

Pendulum.

Let Fig. 253 represent a compound pendulum of

weight W, suspended at 0, and let C be its center

of gravity. Let I be its moment of inertia with re-

spect to the axis of rotation, k its radius of gyration,

r the distance from the support to the center of

gravity and a the angular acceleration. The equation of moments
about gives

2Mo= -Wfsine = la.

W
Since I = M¥ = —¥,

g

__ Wr sin d _ rg sin 6

9

The tangential acceleration at of point Q, at a distance I from

the axis 0, is

rig sin d
at = la =

k^

k^
If the length I be taken equal to — , the tangential acceleration «(

of point Q will be

at = —g sin6,

which is the same as the acceleration of the simple circular pen-

dulum. It is seen from this that a simple circular pendulum of

k^
length Z = — will vibrate in the same time as the compound pen-

dulum. The length — is called the length of the compound pen-

dulum, and the point Q is called the center of oscillation.
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Since I = —, the time of one complete period becomes

V gr
rp

Also, ^ = K— ^gr.

The point of suspension and the center of oscillation are inter-

changeable, as will now be shown. Let h be the radius of gyra-

tion of the pendulum with respect to the axis through the center

of gravity C parallel to the axis of rotation. Since

/c,2 = k'^ ~r^ and fc^ = rl,

h' = ?il-F) =OCX QC.

Since kc is a constant, regardless of the point of suspension, the

product OC X QC must be a constant. If OC is made smaller,

QC becomes proportionately larger, and vice versa.

Again, this equation would not be altered in any way if the

position of and Q were interchanged, hence if the pendulum is

inverted and suspended from Q, point must become the center

of oscillation. Since the length I remains the same, the time of

vibration is the same.

EXAMPLE.

A cylinder 2 inches in diameter and 12 inches long is hung from an axis

through the diameter of one end. Find the time of oscillation. From what

other point could it be suspended to vibrate in the same length of time?

Solution:— k? ='- + '± = 0.335 ft.'.

T = 2,rl/_
V3

°-^^^ = 0.905 sec.
32.2 X 0.5

The center of oscillation is given by

? = 0^5 = 0.67 ft.
r 0.5

If the cylinder is suspended from the center of oscillation it will vibrate in

the same length of time.

Problem 1. Find the time of oscillation and the center of oscillation for

the cylinder of the Example above, if suspended from an axis through the

cylinder 1 inch above the middle. Ans. T = 1.16 sec. — = 1.105 ft.

Problem 2. A bar 1 inch square is suspended from a central axis through

one end parallel to the edges. What must be its length in order that it shall

oscillate in 1 second. (Complete period.) Ans. h = 1.225 ft.
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Problem 3. Show that the bar of Problem 2 has four points of suspension

for which its period of oscillation is 1 second. Ans. 0.408 ft. from the end.

109. Center of Percussion. Let P, Fig. 254, be an impulsive

force or blow which causes angular acceleration of the body which

is suspended from 0. The force P is variable, but at any instant

during the blow,

Pd = la.

By the principle of Art. 105, the resultant tangential effective

I? .

force Mra acts at point Q, distant — from the point of support.

Let Rx be the tangential component of the reaction at caused by

P. If the effective force Mra is applied reversed, y
the system shown will be in equilibrium. By using

the equation SMg = 0, the value of R^ may be

computed for any value and position of force P. p
It is evident that if force P is applied at point Q, '

i?j = 0. The point Q at which the body may be (? l^fA^

struck without producing any reaction parallel to

the tangent is called the center of percussion. It
'

is coincident with the center of oscillation of a pen-
'°'

dulum. It follows, then, that the center of percussion and the

point of suspension are interchangeable.

Problem 1. A slender rod 2 feet long suspended in a vertical position from

an axis through one end has a force of 100 lbs. applied normal to the rod at its

middle point. What is the amount and direction of the horizontal kinetic

reaction caused by the force? Ans. Rx = 25 lbs.

110. Centrifugal Tension in Flywheels. If the tension in the

arms of a flywheel is neglected, the tensile stress in the rim due

to rotation may be computed. For the half rim shown in Fig. 255

the normal effective force Mfu^ acts through the center of gravity.

Also, the effective force reversed as indicated would be in equilib-

rium with the two induced tensile forces, P, P. Then, if W is the

weight of the half rim,

P = t: — rai^.

2 g

2r
If r is the mean radius. of the rini, r = — (approximately). The

p
unit stress s = -r, A being the area of the cross section of the rim.
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If the tension in the rim of the flywheel is neglected, the tensile

stress in the arms may be computed. In Fig. 256, let AB be the

part of the rim carried by one arm. Let W be the weight of this

part and let r be the distance from to its center of gravity.

The induced tensile force caused by rotation is

P = — rw^.

g

The unit stress is s = -j , .4 being the area of the cross section of

the arm.

ts:,.-^

Problem 1. Show that if the tension in the arms is neglected, the speed

necessary to produce the same stress in the rims of flywheels varies inversely

as their radii.

Problem 2. A cast iron flywheel 12 feet in diameter has a rim 2 inches

thick and 12 inches wide. If the flywheel is rotating at 200 r.p.m., what is

the unit centrifugal tensile stress in the rim if the tension in the arms is neg-

lected? Ans. 1490 lbs. per sq. in.

Problem 3. At what speed must a flywheel 1 foot in diameter be rotated

to produce the same unit stress in the rim as in Problem 2?

Ans. 2400 r.p.m.

111. Weighted Conical Pendulum Governor. Fig. 257(a)

represents a weighted conical pendulum governor which consists of

two spheres, A, A, at the ends of arms BA, and a weight Wi sup-

ported by the collar CC. Consider first the weight Wi as the

free body. Fig. 257(b), with the governor rotating uniformly.

The body is under static conditions so equation HFy = gives

2 cos 6i

Consider next one of the spheres and its arm as the free body,

Fig. 257(c). The impressed forces acting upon the free body are

three in number, the weight W, the tension P and the pin reaction

at B. If the effective force Mrw^ is added to the system reversed
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in direction, the free body will be under static conditions. Accu-

rately, the force Mrco^ should act through the center of oscillation

of the sphere and its arm and the weight of the arm should be

Fig. 257

considered, but the error is small if the weight of the rod be neg-

lected and Mrco^ be considered to act through the center of gravity

of the sphere. The equation 2Mb = gives

Pd + Wr = MfiJ'h.

Problem 1. In Fig. 257, let BD = 12 inches, DA = i inches, W = 20 lbs.,

Wi = 100 lbs. and = 8i = 45° in the lowest position. At what speed will

the governor begin to act? Ans. 122 r.p.m.

Problem 2. If the governor described in Problem 1 has a spring which

carries half of the weight Wi when it is in its lowest position, at what speed

will it begin to act? Ans. 94.5 r.p.m.

112. Balancing of Rotating Bodies. It was seen in Art. 107

that if a body rotates about an axis not through its center of grav-

ity, the bearing reactions have kinetic components. These con-

tinually change in direction and so cause destructive vibration.

Balancing consists in adding rotating parts in such a way that

the effective forces for the entire system are in equilibrium and

no kinetic reactions are induced. The static reactions due to

gravity and any other constant impressed forces remain constant

whether the body is at rest or in motion.

In the following discussion, only rotation at constant speed will

be considered, and only rotation of bodies for which the resultant
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normal effective force passes through the center of gravity. (See

Art. 106.)

113. Balancing of Bodies in the Same Plane Normal to the

Axis of Rotation. Let A, Fig. 258, be a body of weight Wi, at

a radial distance n, rotating about the axis through normal to

OA with angular velocity co. By its rotation it exerts upon the

Wi
axis a centrifugal pull equal to— rju^ which continually changes

in direction and causes variable reactions at the supports. If, how-

FiG. 258

ever, another body of weight W2 be placed diametrically opposite

in the plane of rotation at the end of radius r^, of such length that

9 ~ 9 '

the two bodies are in balance since the centrifugal pulls are equal

and opposite. Since co and g are constants, the condition above

reduces to

pFarz = Win.

It should be noted that the condition W2r2 = Win is also the

condition for static balance. In practice it is customary to deter-

mine the necessary value of Wtr^ by means of static balancing.

Fig. 259(a) represents a number of bodies, Wi, W2, W3, at

radial distances n, r^, n, in the same plane, rotating about the

axis through normal to their plane. These are to be balanced

by a single weight W with radius r. If a vector polygon, Fig.

259(b), be drawn in which a, b and c represent Win, Wj?"! and

Wzn respectively in magnitude and direction, the closing line d

will represent Wr in magnitude and direction. Either IF or r

may be assumed and the other computed.

Problem 1. A sphere weighing 40 lbs. at a radial distance of 10 inches from

its axis of rotation is to be balanced by another of 60 lbs. weight. What must
be its radial distance? Ans. 6| in.
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Problem 2. In Fig. 259, Wi = 10 lbs., W2 = 5 lbs., Wb = 20 lbs., n = 24

inches, rj = 20 inches, rj = 16 inches, angle AOB = 45° and angle BOC = 90°.

If r is to be 12 inches, what must be the weight W to balance the system?

What is the angle DOAl Ans. W = 25.7 lbs. DOA = 105° 50'.

114. Balancing of Bodies in Different Normal Planes. In

either Fig. 260(a) or 260(b) let Wi be the body to be balanced,

and 00 the axis about which it rotates. Let planes through any

two points B and C normal to the axis be the planes in which the

balancing bodies are to lie. If Wi is to be balanced by two bodies

Wi and W3, they must all lie in a plane containing the axis 00. It

is also necessary that the sum of the moments of the normal

effective forces about any point in this plane shall be equal to

zero.

Q-

IF
Q

\W2

(a)

Fig. 260

18

\'')^z (b)

I
—-jsf

£) 0.

Equation Silfg = gives

or

"3 W\

WzT^ = Wina.

In Fig. 260(a), equation UMc = gives

W^r^b = WMb - a).

In Fig. 260(b), the same equation gives

PF2?-2& = Winib + a).

From these equations the two unknown quantities, W2r2 and

WsTs, may be determined.

Similarly, any other bodies Wi, Wi", etc., in any other planes

normal to the axis may be balanced by bodies W2', W2", etc., in

the plane through B, and bodies W3', W3", etc., in the plane through

C. Then finally all the bodies W2, W2', W2", etc., in the normal

plane through B may be replaced by a single body, and the bodies

W3, W3', Ws,", etc., in the normal plane through C may be replaced

by a single body.



176 APPLIED MECHANICS [Chap, tx

Problem 1. A shaft 6 feet long between bearings carries a steel disk 2 feet

in diameter and 4 inches thick, 2 feet from the left bearing. The disk is keyed

to the shaft and is eccentric 4 inches. What weights must be added in planes

6 inches from the bearings, at a radial distance of 1 foot, in order to balance

the disk? ^ns. 119.7 lbs. at left. 51.3 lbs. at right.

Problem 2. If on the shaft described in Problem 1 another similar disk is

placed 2 feet from the right end and 90° back of the first, what must be the

balancing weights in order to balance both disks? At what angle with the

position of the balancing weights in Problem 1 must they be placed?

Ans. Left, 130.1 lbs., at 23° 10'. Right, 130.1 lbs., at 66° 50'.

GENERAL PROBLEMS.

Problem 1. A pulley 2 feet in diameter rotating at 600 r.p.m. is brought to

rest in 50 seconds by a constant force of friction on its shaft. How many
revolutions does it make? Ans. 250.

Problem 2. What is the tangential acceleration of a point on the rim of the

pulley in Problem 1? What is the normal acceleration and the tangential

velocity at the end of 10 seconds?

Ans. at = 1.257 ft. per sec. per sec. On = 2528 ft. per sec. per sec. v =
50.3 ft. per sec.

Problem 3. The drum of a hoisting engine for a mine cage is 50 inches in

diameter. If the cage is to be lowered at the rate of 20 feet per second, how
many r.p.m. must the drum make? Ans. 91.7.

Problem 4. If the mine cage in Problem 3 weighs 500 lbs. and the moment
of inertia of the drum is 120, during what time may the cage be allowed to drop

freely before the given velocity is obtained? Ans. 1.73 sec.

Problem 5. A flywheel weighing 200 lbs. has its axis of rotation J inch from

its geometric axis. If the wheel is midway between two bearings, what are

the kinetic reactions at the bearings when the flywheel is rotating at 600 r.p.m.?

Ans. 128 lbs. on each.

Problem 6. If the axis of the flywheel in Problem 5 is horizontal, what

speed would be necessary to cause each reaction to vary from zero to 200 lbs.

during a half revolution? Ans. 531 r.p.m.

Problem 7. A vertical shaft 6 feet long carries a weight of 100 lbs. 4 inches

from its axis, 1 foot from the top support, and 50 lbs. 6 inches from the axis,

4 feet from the top support on the opposite side of the shaft. Find the normal,
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tangential and axial components of each reaction when the shaft is rotating at

80 r.p.m.

Ans. At bottom, Rn = 25.6 lbs. Rt =0. i?„ = 150 lbs. At top, Rn =
43.6 lbs. Rt =0. Rv = 0.

Problem 8. If the weighted shaft described in Problem 7 is brought to

rest by a brake in 5 seconds, what are the tangential reactions?

Ans. Rt = 0.58 lb. at bottom. Rt = 1.01 lbs. at top.

Problem 9. A steel rod 1 inch in diameter and 10 feet long is supported

on a horizontal axis through one end normal to the axis of the rod. Locate the

center of oscillation. What is its period of oscillation if it is used as a pendulum

with smaU amphtude? Ans. 6.6668 ft. T = 2.86 sec.

Problem 10. If the rod described in Problem 9 is raised to the horizontal

position and then released, what are the normal and tangential reactions at

the instant of release? What are the normal and tangential reactions as it

passes the vertical position?

Ans. Rn =0. Rt = 6.675 lbs. i?„ = 66.8 lbs. Rt = 0.

Problem 11. If the rod described in Problem 9 is released from the vertical

position above the axis, what are the normal and tangential components of

the reactions when it is 45° from the vertical? When in the horizontal posi-

tion? When in the lower vertical position?

Ans. At 45°, Rn = 7.11 lbs. Rt = 4.74 lbs. At 90°, Rn = 40.1 lbs.

Rt = 6.675 lbs. At 180°, R„ = 106.8 lbs. Rt = 0.

Problem 12. A cast iron flywheel rim weighs 4000 lbs. and is cast in two

parts. The two sections are to be held together by six steel bolts at each

joint. If the mean radius of the rim is 5 feet and the maximum speed is to be

240 r.p.m., compute the necessary area of each bolt at the root of the thread

for an allowable unit tensile stress of 12,000 lbs. per sq. in.

Ans. 0.87 sq. in.

Problem 13. A solid cast iron flywheel rim is 4 inches wide, 3 inches deep

and 24 inches outside diameter. If the tension in the arms is neglected, what

is the imit tensile stress in the rim when the wheel is rotating at 1600 r.p.m.?

Ans. 2080 lbs. per sq. in.

Problem 14. A cast iron flywheel 10 feet in diameter has a rim 10 inches

wide and 6 inches deep. If the ultimate tensile strength of cast iron is 25,000

lbs. per sq. in., what speed will rupture the wheel if the tension in the arms is

neglected? Ans. 1020 r.p.m.

Problem 16. The flywheel described in Problem 14 has a total weight of

8000 lbs. If the center of gravity is 1 inch from the axis of rotation and the

wheel is midway between two supports, what is the variation in each reaction

when the wheel is rotating at 60 r.p.m.? Ans. 817 lbs.

Problem 16. The wheel of the Brennan monorail car gyroscope weighed

1000 lbs. and was rotated at 3000 r.p.m. on a horizontal shaft midway between

bearings. If it had been eccentric 0.01 inch, what would have been the varia-

tion in each reaction?

Ans. From 1777 lbs. upward to 777 lbs. downward.

Problem 17. A 20-lb. governor ball on an arm 3 ft. long rotates at such a

speed that the arm is kept at an angle of 45° with the axis. What is its speed?

What is the tension in the arm? Ans. 37.2 r.p.m. 28.3 lbs.
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Problem 18. If the length of the arm of the governor ball described in

Problem 17 is reduced to 2.5 feet and the governor is rotated at the same speed,

what effect is produced on the angle with the axis and on the tension in the

arm? Ans. e = 32°. T = 23.5 lbs.

Problem 19. Fig. 261 represents a weighted conical pendulum governor

for which Wi = 40 lbs. and W = 10 lbs. What speed will keep the governor

in the position shown? What is the tension in each arm?
Ans. 158 r.p.m. 30.2 lbs. in lower. 45.2 lbs. in upper.

Fig. 262

Problem 20. If 9 = 30° when the governor shown in Fig. 261 is in its low

position, at what speed will it begin to act? Ans. 130 r.p.m.

Problem 21. In the swing shown in Fig. 262 each car weighs 1200 lbs. As
the cars are rotated about the vertical axis AB they swing out from the vertical.

If the maximum allowable value of 6 is 45°, what is the maximum speed at

which it may be run? What is the corresponding stress in the supporting

cables? Ans. 13.5 r.p.m. 1700 lbs.

Q
=L-^

w,'

kl'^ -5- ^. -H
ra) rb)

Fig. 263

Problem 22. Fig. 263(a) shows a side view and Fig. 263(b) an end view of

a shaft to which two weights Wi and Wi' are attached. If TFi = 100 lbs.,

n = 18 inches, W/ = 50 lbs. and r/ = 15 inches, what weights at A and B
with radii of 12 inches will be necessary to balance the system? What is the

angle of each radius with the horizontal plane?

Ans. Wa = 170 lbs. 8^. = 262° 5'. Wb = 43.1 lbs. Sb = 154° 10'.



CHAPTER X.

COMBINED TRANSLATION AND ROTATION.

115. Any Plane Motion Equivalent to Combined Translation

and Rotation. In a plane motion of a body, each point of the

body remains at a constant distance from a fixed plane. This

plane or any parallel plane may be called the plane of motion of the

body. The plane of motion through the center of gravity of the

body is commonly used for reference.

Any plane displacement of a body may be considered to be made
up of a rotation about any point in the plane of motion and a

corresponding translation. That is, the same result would have

been obtained by the two simple motions as by the actual motion,

whatever it may have been. In Fig. 264 let AB be a line in the

plane of motion joining any two points of a body in their original

position and let A2B2 be their position after any plane motion of

the body. Let be any point in the plane of motion. The
displacement from AB to ^12^2 may evidently be made by a

rotation about to the position AiB^ parallel to ^42-52, then a

translation from AiBj to A2B2.

Fig. 264

Again, any plane displacement of a body is equivalent to a simple

rotation about some fixed point in space. In order to locate this

point, join AA2 and BB2, Fig. 265. Erect perpendicular bisectors

of AA2 and BBi which intersect at 0. The triangles AOB and

A2OB2 are equal in all their parts. Therefore angle .40^2 =

angle BOB2, since angle AOB = angle A2OB2. Hence it is plain

that the displacement from AB to ^2^2 is equivalent to simple

rotation through angle AOA2 about point 0.

179
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If AAi and BB^ are parallel, the point is at infinity and the

motion is equivalent to pure translation.

Problem 1. In Fig. 264, resolve the displacement from AB to A2B2 into

a rotation about 0' and a corresponding translation. Do the same, using

point A as a center. Do the same, using the point midway between A and B
as a center.

Problem 2. A wheel rolls along a horizontal plane through one-fourth of

a revolution. Find the center of equivalent rotation. Do the same for

rotation through one-half of a revolution.

116. Resolution of Velocities in any Plane Motion. The
absolute velocity of any point of a body which has any plane

motion can usually be determined best by getting first its velocity

relative to some special point of reference on the body and then

the absolute velocity of the point of reference. By Art. 90 the

absolute velocity of the given point is equal to the vector sum of

the two velocities, its own velocity relative to some point of refer-

ence, and the absolute velocity of the point of reference.

Let B, Fig. 266, be any point of a rigid body and let A be the

point of reference chosen. Let Vi be the absolute velocity of A
and v' the velocity of B relative to A. Since A and B are fixed

points on the rigid body, the only velocity B can have relative

to A is tangential. This is equal to roi, r being the length AB
and CO the angular velocity. By the principle stated above, the

absolute velocity of B is the vector sum of the two, or v.

A K

Fig. 266 Fig. 267

Conversely, the absolute velocity of any point of a rigid body

may be resolved into two components, one of which is equal and

parallel to the absolute velocity of any chosen point of reference

on the body, while the other is normal to the line joining the

two points.

As an example consider the wheel shown in Fig. 267 which is

rolling to the left on a horizontal plane. If the velocity of the
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center of the wheel is Vj and its angular velocity is co, the velocity

of any point on the rim with respect to the center is ru = Vi for

free rolling. The absolute velocity of any point is the vector sum
of its velocity with respect to the center and the absolute velocity

of the center, as shown at B. The absolute velocity of B is v, the

vector sum of Vi and nc. In the same way the absolute velocity of

the bottom point C is the vector sum of its velocity with respect

to 0, which is na, and the absolute velocity of 0, which is vi.

Since these are equal in amount and opposite in direction, the

absolute velocity of point C is zero.

In discussing the motion of the roUing wheel, it is sometimes

simpler to use point C as the point of reference. Since its absolute

velocity is zero, the absolute velocity of any point, as B, is the

same as its velocity relative to point C. Then Vb = TbO), Tb being

the distance BC.

Problem 1. In Fig. 266, Vi is 20 feet per second horizontal to the right,

r is 3 feet, u is 5 radians per second clockwise and AB makes an angle of 30°

with the horizontal. What is the absolute velocity of B1
Arts. 30.4 ft. per sec. at 25° 20' with hor.

Problem 2. A cylinder 1 foot in diameter is rolling to the right on a hori-

zontal plane with a uniform velocity of 10 feet per second. Using the center

as the point of reference, find the absolute velocity of a point on the rim in

front, 45° above the horizontal through the center. Check by using the

bottom point of the cylinder as the point of reference.

Am. 18.46 ft. per sec. at 22° 30' with hor.

117. Resolution of Accelerations in any Plane Motion. The
principle of Art. 90, which was referred to in the preceding article,

is true for accelerations as well as for velocities. That is, the

absolute acceleration of any given point of a body is equal to the

vector sum of the relative acceleration of the given point with

respect to some chosen point of reference on the body and the

absolute acceleration of the point of reference.

Let B, Fig. 268, be any point of a rigid body and let A be the

point of reference whose absolute acceleration is ai. Let AB = r

and let the angular velocity and acceleration be o and a respec-

tively. The relative acceleration is most easily determined by

means of its tangential and normal components. The tangential

component is ra and the normal component is rco^. These two

combined give the relative acceleration a', and finally a' and ai

combined give vector BC = a, the absolute acceleration of B.
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Conversely, the absolute acceleration of any point may be

resolved into three components, one of which is equal and parallel

to the absolute acceleration of any chosen point of reference on

the body, another equal to ru^ along the line joining the two

points, and a third equal to ra perpendicular to this Une.

Fig. 268 FiQ. 269

As an example consider the wheel shown in Fig. 269, which is

rolling to the left on a horizontal plane. Let the acceleration of

the center of the wheel be ai, its angular acceleration a and its

angular velocity co. The tangential component of the acceleration

of any point on the rim, as B, relative to the center is ra = ai for

free rolling. The normal component of the relative acceleration

is ro)^. These two vectors combined give a', the relative accelera-

tion of B with respect to the center. The vector sum of a' and ai

gives a, the absolute acceleration of point B.

Problem 1. In Fig. 268, ai is 50 feet per second per second horizontal

to the right, AB is 3 feet long and is at an angle of 30° with the horizontal,

CO is 5 radians per second clockwise and a is 20 radians per second per second

clockwise. Determine the absolute acfceleration of point B.

Ans. a = 145.6 ft. per sec. per sec, 5° 45' above hor.

Problem 2. Solve for the absolute acceleration of the point described in

Problem 2 of Art. 116, using the same two points of reference.

Ans. a = 200 ft. per sec. per sec. toward the center.

118. Instantaneous Axis. Let A and B, Fig. 270, be any two
points of a rigid body having any plane motion. Let their veloci-

ties be in the directions of v^ and Vb as shown.

At A erect AO perpendicular to v^, and at

B erect BO perpendicular to v^. Since the

absolute velocity of point A is normal to the

line AO, it is equivalent to rotation about
some point on AO. Similarly, since the

absolute velocity of point B is normal to BO, it is equivalent

to rotation about some point on BO. Since this point is on both
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AO and BO, it must be at their point of intersection 0. For the

instant considered it is therefore the center of rotation of points

A and B, and likewise of the rigid body upon which they are

located. It is called the instantaneous center of the body and the

axis through this point, normal to the plane of motion, is called the

instantaneous axis of the body.

In general, the instantaneous center will be at a different point

the following instant. Its path relative to the body is called the

body centrode and its path in space is called the space centrode.

In instantaneous rotation, as in simple rotation, the relation

V = no holds true. Then Vb = OBu and v^ = OAw, w being the

angular velocity of the body at that instant.

Problem 1. AB in Fig. 270 is a uniform rod at an angle of 30° with the

horizontal. The vector vb is horizontal to the right and the vector va is

vertical, upward. Locate the instantaneous center. If vb is 100 feet per

second and AB is 6 feet, what is va! Ans. va = 173.2 ft. per sec.

Problem 2. In Problem 1, what is the normal acceleration of the center of

gravity of the rod? Ans. an — 3333 ft. per sec.

Problem 3. Take two pieces of cardboard about 6 inches square and

place one on top of the other with their edges coinciding. Let the bottom one

remain stationary while the upper left-hand corner of the top one is moved
downward along the left edge of the bottom one, and the lower left-hand corner

of the top one is moved to the right along the lower edge of the bottom one.

Locate on the upper card the instantaneous center for a number of positions

and prick through into the lower card. Draw the body and space centrodes

and cut the cards along these lines. Note that a straight line motion of the

corners is obtained by rolling the body centrode upon the space centrode.

119. Equations of Motion. As shown in Art. 117, the abso-

lute acceleration of any point of a rigid body having any plane

motion may be resolved into three components, one equal and

parallel to the acceleration of any

chosen point of reference on the body,

another equal to roi^ acting along the

line joining the two points, and a

third equal to ra acting perpendicular

to this hne. If the mass of any par-

ticle is dM, the effective force for it is

equal to the resultant of the three

components, dMa, dMrd^ and dMra.

In Fig. 271 let A be the point of

reference and let the X axis coincide with ai, the absolute accel-

eration of A. Let 2/^ be the resultant of all the external forces.
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and 2F^ and SF„ the components of IIF in the X and Y directions

respectively. Since the external force system is equivalent to the

effective force system for the whole body of mass M,

HF^ = fdMai + jdMra sin d +J dMra^ cos B

= Hi CdM + a fdMy + iJ'JdMx

= Mai + May + Moo^x.

I,Fy= jdMra cose - I dMnJ^ sin e

= a
I
dMx - 0)2 / dMy

= Max - Mco^y.

HM^ = JdMr^a + / dMair sin 6

= a jr^ dM + fli jdMy

= lAa + Maiy.

If the center of gravity is taken as the point of reference, as is

usually the case, the three equations above become

2F. = Ma.
2F, = 0.

SMo = loa.

7o is the moment of inertia of the body with respect to the axis

through the center of gravity.

The principles derived above may be stated as follows:—
1. In any plane motion the center of gravity is accelerated the

same as if the whole mass were concentrated at that point and acted

upon by forces equal in amount and direction to the actual forces.

2. In any plane motion the angular acceleration about the center

of gravity is the same as if that center were fixed and a couple of

moment = SMo applied to the body.

If the reversed effective forces are considered to be added to

the free body with its actual impressed forces, the equations of

equilibrium hold true. That is, if a force Ma be applied at the

center of gravity in a direction opposite to its absolute acceleration

and a couple loa opposed in direction to the angular acceleration,

the problem is reduced to static conditions.
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120. Wheel Rolling on Horizontal Plane. Several illustrative

examples of the last five articles will now be given. One of the

simplest is that of a wheel rolling freely on a plane surface. The

motion of the wheel is a combined rotation and translation.

If a horizontal force P, Fig. 272, acts at the center of the wheel

to produce perfect rolling on a rough surface, a frictional force F
is induced at the point of support. Then, by Art. 119,

SiP. = P W-F = — a.

g

Fr = ha.Also

For perfect rolling, a = fa.

From these three equations the acceleration and the frictional

force may be determined. In the direction normal to the plane,

static conditions hold true, soW = N.

P-^i

Fig. 273

EXAMPLE 1.

In Fig. 272, let the wheel be a cylinder 4 feet in diameter, let W
pounds and P = 100 pounds. Determine F, a and a.

Solution: — By summing horizontal forces

1000

1000

By moments about 0,

100 - F

FX2

32.2
"-•

1 1000

2 32.2

Also, a = 2a.

By solution of these three equations,

F = 33i lbs.

a = 2.147 ft. per sec. per sec.

tx = 1.073 rad. per sec. per sec.

EXAMPLE 2.

Fig. 273 represents a cylinder 2 feet in diameter weighing 200 pounds

resting on a horizontal plane surface. Attached to the cylinder and concentric

with it is a hollow cylinder 1 foot in diameter, of negligible weight, around

which a cord is wrapped. What horizontal force P appUed to the cord as
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shown will produce an acceleration of 20 feet per second per second? What
is the frictional force Ft Assume free rolling.

Solution: — Equation SFj = Max gives

Equation SAfo = loa gives

PX0.5 4-.Xl=^gxPxf.
P = 124.1 lbs.

F =0.

If P is applied lower than the point indicated, a frictional force is induced

in the direction opposite to P, while if it is applied above this point a frictional

force is induced in the same direction.

Problem 1. Solve Example 2 above if the small cyhnder is solid and

weighs 50 pounds. Arts. P = 147.5 lbs. F = 7.7 lbs.

Problem 2. A cast iron cylinder 1 foot in diameter and 1 foot long, free to

roll on a horizontal plane, has a force of 5 pounds acting horizontally at the

center normal to the geometric axis. Find the velocity and acceleration of a

point on the rim behind, 30° above the horizontal through the center, 5 seconds

from rest. What is the frictional force F?
Ans. V = 2.63 ft. per sec. forward and upward, 30° with hor. a = 4.87

ft. per sec. per sec. forward and downward, 24° 40' with hor. F = 1.67 lbs.

Problem 3. Solve Problem 2 if the 5-lb. force is acting horizontally at the

top.

Ans. V = 5.26 ft. per sec. forward and upward, 30° with hor. a = 18.88

ft. per sec. per sec. forward and downward, 27° 15' with hor. F = 1.67 lbs.

Problem 4. Solve Example 2 above if the diameter of the small cylinder is

1.5 feet. Ans. P = 106.5 lbs. F = 17.7 lbs.

121. Wheel Rolling on Inclined Plane. Let Fig. 274 repre-

sent a wheel rolling on a plane inclined at an angle /3 with the

horizontal. The plane is considered to be
rough enough so that free rolling takes place.

If the wheel is released from rest at the top

of the plane and allowed to roll down freely

under the influence of gravity, there will be
acting in addition to W, the normal reac-

tion N and the frictional force F. The three

equations of motion may be written as in the

preceding article in order to determine F,

N and the motion. Let the X axis be parallel to the plane. Then

„ W
I,F^ = Wsm^-F = ~ a.

g
^Fy = Wcos^-N = 0.

Fr = ha.
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Also, a = ra for free rolling.

1 W
If the wheel is a cylinder, /o = 5 — t^, so by solving for F,

F = lWsm0.
If/ is the coefficient of static friction between the cylinder and the

plane, and F' = fN is the limiting value of the friction F,

. F' ITFsing 1, -

f = icf = ^ TT = o tan 3.
•' N TFcos/3 3

'^

This is the limiting value for free rolling. If in any case ^ tan

is greater than the coefficient of friction /, slipping will take place.

If the cylinder slips, the friction is kinetic and a does not equal ra.

However, the force of friction becomes known, being fN (/ is the

coefficient of kinetic friction), so all values may be determined.

Problem 1. A steel disk 3 inches in diameter and 1 inch thick is released

from rest on a 30° plane. If the coefficient of static friction is 0.25 and th6

coefficient of kinetic friction is 0.20, determine its linear and angular velocity

when the disk has rolled 8 feet down the plane. What is the frictional force?

Ans. w = 13.1 ft. per sec. a = 104.8 rad. per sec. F = 0.334 lb.

Problem 2. Determine the motion of the disk in Problem 1 if the plane and

disk are both smooth. Ans. v = 16.1 ft. per sec. u = 0. F = 0.

Problem 3. Solve Problem 1 if the angle of the plane is changed to 45°.

Ans. V = 17.08 ft. per sec. 01 = 68.2 rad. per sec. F = 0.283 lb.

Problem 4. The steel disk described in Problem 1 is rolled up a 10° plane

by means of a horizontal force P appUed at the center. If there is no slipping

and the acceleration is 2 feet per second per second, find the value of the force

P, the normal pressure N and the friction F. If at the end of 5 seconds the

force P is removed, how much farther up will the disk roll?

Ans. P = 0.544 lb. N = 2.065 lbs. F = 0.062 lb. 13.4 ft.

Problem 5. A steel sphere 2 inches in diameter starts from rest and rolls

down a 15° plane. If the static coefficient of friction is 0.15 and the kinetic

coefficient of friction is 0.10, what is the linear and angular velocity after one

revolution? What is the force of friction?

Ans. V = 2.49 ft. per sec. to = 29.9 rad. per sec. F = 0.088 lb.

122. Connecting Rod of Engine. Graphic Solution. The
principle of relative velocities and accelerations is especially well

adapted to the solution of the problem of the connecting rod of a

steam engine. In Fig. 275, A is the crosshead with velocity v

and acceleration a, these being the same as the velocity and

acceleration of the piston; AB is the connecting rod, of length Z; B
is the crank pin with tangential velocity Vi; BO is the crank of

length r; is the center of rotation of the flyTvheel. The fly-

wheel is assumed to be heavy enough so that point B has a rotation
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practically uniform, with angular velocity oii. The angle <t>

between the connecting rod and the line AO increases to a maxi-

mum when B is at the top point in its circlej then decreases and

changes to negative values.

Fig. 275

The motion of the connecting rod is an oscillatory rotation with

variable angular velocity w about point A, which meanwhile has

an oscillatory translation along the line AO. The absolute veloc-

ity of point B IS Vi = rcoi normal to OB. By the principle of

relative velocities, this is equal to the vector sum of the absolute

velocity of A and the relative velocity of B with respect to A.

Let «2 be the velocity of B relative to A. It is known that its

direction is normal to AB, since A and B are rigidly connected,

and that the direction of v, the velocity of point A, is horizontal.

The vector diagram, Fig. 276, completely determines the value

of Vi and wj . Since the motion of B relative to .4 is a rotation with

radius I, v^ = lea, or u = j. The linear velocity of A and the

angular velocity of the rod with respect to A are thus completely

determined, so the absolute velocity of any point on the rod may
be found.

Fig. 276

In Fig. 277 the unknown accelerations are determined. Since

point B, Fig. 275, is moving in a circle with uniform angular

velocity wi, its only acceleration is rtoj^, toward the center 0. This

is drawn to scale in Fig. 277. The relative acceleration of B with

respect to A and the absolute acceleration of A must have rwi^ as
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their vector sum. The relative acceleration of B with respect

to A is made up of two components, one wholly known, the other

known only in direction. The normal component 1m^ is com-

pletely known, so is drawn first. The tangential component la

is perpendicular to the direction of the connecting rod, and the

absolute acceleration a of point A is horizontal and must close

the polygon. This completely determines a and a, so the abso-

lute acceleration of any point on the rod may be found.

Problem 1. The crank of an engine is 1 foot long and the connecting rod

is 6 feet long. If wi = 20 radians per second, find the velocity and the accelera-

tion of the crosshead when 9=0°; when 6 = 30°.

Ans. V = 0. a = 467 ft. per sec. per sec.

V = 11.46 ft. per sec. u, = 380 ft. per sec. per sec.

Problem 2. Solve for the velocity and acceleration of the crosshead of

Problem 1 when 9 = 90°; when 9 = 180°.

Ans. !) = 20 ft. per sec. a = — 68 ft. per sec. per sec.

V = 0. a = —333J ft. per sec. per sec.

123. Kinetic Reactions on Connecting Rod. In order to

determine the crank pin and crosshead pin pressures, the connect-

ing rod is considered as a free body. Fig. 278. The impressed

forces acting upon the rod consist of the following: its weight W
vertically downward at its center of gravity; the pressure F
from the piston rod through the crosshead; the normal pressure

Na from the crosshead; the crank pin reaction at B. The crank

pin reaction is resolved into its two components, N along the rod

and T perpendicular to the rod. Of these impressed ' forces,

N, T and A''^ are unknown.

Fig. 278

Under the action of these impressed forces the rod is accelerated

both in translation and rotation. By the method of Art. 122 the

values of co, a and a may be determined. If now the reversed

effective forces be added to the free body. Fig. 278, it will be

under static conditions as discussed in Art. 119. If wi is clock-

wise and the value of 6 between 0° and 90°, o), a, v and a will be

in the directions shown. The three components of the accelera-
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tion of the center of gravity are a, horizontal to the right, ra

downward, normal to the rod, and fco^ along the rod toward A.

Then the reversed effective forces are (1) Ma horizontal to the

left; (2) Mrw^ outward away from A; and (3) Mra upward,

normal to the rod. It will be remembered that Mra acts through

the point Q, distant — from A and not through the center of
r

gravity. The force Mrco'^ acts through the center of gravity as

shown in Case 1, Art. 106. Since all of the forces are known
except Na, N and T, these may be determined by the solution of

the three equations of equilibrium.

In Fig. 278, equation HF^ = gives

F - N cos4> + T 8m<t> - Ma + Mfoi^ cos - Mya. = 0.

Equation HF^ = gives

Na-W -{- Mxa + Mroi' sin<t> - Tcos(t> - N sin = 0.

Equation SM^ = gives

Wx - May - Mfa (j\ + Tl = 0.

EXAMPLE.

In Fig. 278, let r = 1 foot, I = 6 feet, W = 200 pounds, f = 3.8 feet,

F = 10,000 pounds, wi = 30 radians per second, 9 = 30° and Ia = 120.

Solve for A''^, N and T.

Solution:— M =— =
9

^ = _L
f Mr

200

32.2
6.21.

120
,

= 5.08 ft.

/Z?

6.21 X 3.8

sin.* = 0.0833; cos,* = 0.9965; <* - 4° 47'.

X = 3.786 ft.; y = 0.316 ft.

Scale •

,

l"=600'

Scale
,,

lii=-}Q7sec.

Fig. 279

a=855

FiQ. 280

The vector diagram for the velocities is shown in Fig. 279, from which by scale

w = 17.2 ft. per sec,

Zm = 26.1 ft. per sec,

261 . o. Aa = —p— = 4.35 rad. per sec
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In order to determine the accelerations, their vector diagram is drawn,

Fig. 280.

r-oji^ = 900; la^ = Q X 4.352 = 113.

Vector la scales 442, from which a = 73.7 rad. per sec. per sec.

Vector o scales 855 ft. per sec. per sec.

Ma = 6.21 X 855 = 5310 lbs.

Mra = 6.21 X 3.8 X 73.7 = 1740 lbs.

Mfof = 6.21 X 3.8 X 4.352 = 445 lbs.

These are the three components of the effective force for the body, and if

applied reversed, as shown in Fig. 278, are in equilibrium with the impressed

forces.

Equation SFi = gives

10,000 - 5310 - 1740 X 0.0833 + 445 X 0.9965 + 0.0833 T - 0.9965 N = 0.

Equation SF» — gives

Na - 200 + 1740 X 0.9965 + 445 X 0.0833 - 0.9965 T - 0.0833 N = 0.

Equation XMa = gives

5310 X 0.316 - 200 X 3.786 + 1740 X 5.08 -67=0.
Solution of the last equation gives

T = 1627 lbs.-

This value substituted in the first equation gives

N = 5150 lbs.

These two values substituted in the second equation give

Na = 477 lbs.

The resultant pressure of the crank pin is given by

Vm + P = 5400 lbs.

Problem 1. The connecting rod described in Problem 2, Art. 79, is 6 feet

long, the crank is 1 foot long, the horizontal pressure from the crosshead pin

is 6000 pounds and the engine is running at 180 r.p.m. Find the pressure of

the guide on the crosshead and the total pressure on the crank pin when
d = 45°. Ans. Na = 414 lbs. Crank pin pressure = 4190 lbs.

124. Kinetic Reactions on Side Rod. In the side or parallel

rod of a locomotive, each particle of mass dM, as at D, Fig. 281,

Fig. 281 Fig. 282

has a motion of rotation about its own center, point C on the

line AAx, and a translation the same as point C. If the linear

velocity of the locomotive is constant, the absolute acceleration
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of point D is rw^ directed toward point C, co being the angular

velocity of the wheels. Since at any instant the accelerations of

all the particles of the rod are the same in amount and direction,

the resultant of all the elementary effective forces is equal to their

sum, Mro}^, and acts through their center of gravity.

Upon the rod as a free body. Fig. 282, the impressed forces acting

are the two crank pin pressures and its weight W. The effective

force Mroi^ if added to the impressed forces reversed in direction

will give static conditions. The crank pin pressures are most

easily determined in terms of their two components, one vertically

W Mrw^
upward equal to -^ , the other radial equal to—^— . It is evident

that the resultant reaction is a maximum when the rod is at the

bottom of its travel. At this point,

„ Afra)2 W
^ = ^~"+2"

The reaction is a minimum when the rod is at the top, where

„ Mra)2 W^= ~2~~"2-

Problem 1. A side rod weighs 420 pounds, the drive wheels are 6 feet in

diameter, the length of the crank is 16 inches and the locomotive is running at

a speed of 70 miles per hour. What is the maximum pressure on each crank

pin? Ans. 10,390 lbs.

125. Kinetic Reaction on Unbalanced Wheel. If a wheel

whose center of gravity does not coincide with its geometric center

rolls along a horizontal plane surface, the re-

action of the surface is not constant in amount,

but changes during each revolution from a

value greater than the weight W to one less

than W. Let the wheel be as shown in Fig.

283 with its center at and its center of

gravity at C, due to the added weight on one

side. Let the speed of the center be constant;

toward the left and let its amount be v. Since

the pull of gravity tends to retard the motion for values of 9 from
0° to 180° and to accelerate it for values of 6 from 180° to 360°,

the forces Fi and F are necessarily variable.

By the principle of relative motion, the absolute acceleration of

point C is equal to the vector sum of the absolute acceleration of
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the center, ra, and the relative acceleration of C with respect to

the center. The two components of the relative acceleration are

ra and ?w^. Since a is zero, the acceleration of point C is 7co^

toward the center 0. If now the reversed effective force Mrw^ be

added, the wheel will be under static conditions and the equations

of equilibrium may be written. Equation HFy = gives

N =W + Mro^ cos d.

When 6 is zero the value of iV is a maximum and when 8 is 180° it

is a minimum.

Problem 1. In Fig. 283, let r = 3 feet and 7 = 6 inches. At what speed

will the reaction N be zero when C is directly above 01
Ans. 24.06 ft. per sec.

Problem 2. A locomotive drive wheel 6 feet in diameter weighs 2000

pounds and carries an axle load of 13,000 pounds. When the side rod and the

connecting rod are removed the center of gravity of the wheel is 0.6 of a foot

from the center of the wheel due to the counterweight. If the locomotive is

pulled by another at a speed of 30 miles per hour, what is the variation in the

pressure on the track during one revolution?

Ans. 23,000 lbs. max. to 7000 lbs. min.

126. Balancing Reciprocating Parts. A simple illustration of

the balancing of reciprocating parts is furnished by the slotted

(aj

iji

Fig. 284 Fig. 285

slider apparatus driven by a crank rotating at constant speed, as

W
shown in Fig. 284. Let W be the weight and M = — be the

mass of the slider and let friction be neglected. If the angular

velocity of the crank AO is coi, the acceleration of the crank pin

is rcoi^ toward the center. The slider has a variable horizontal

acceleration a = nci^ cos 6, and its motion is simple harmonic.

The force to cause this acceleration is the variable pressure of the

crank pin at A and is equal to

P = Ma = Mru^ cos 6,

as shown in Fig. 285(a). For values of d between 90° and 270°

the acceleration is toward the left, so the force P is acting toward
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the left on the sUder. The equal and opposite pressure of the

slider on the crank pin is P', as shown in Fig. 285(b), which is in

turn transmitted to the support at 0.

In order to balance the force P' on the crank pin, a mass Mi at

a distance n may be added opposite to the crank, as shown in

Fig. 286. If the values of Mi and n are such that

MiTi = Mr,

the force P' is completely balanced, since the mass Mi is exerting

a centrifugal force equal to Mincai^ in the direction OMi and this

has a horizontal component of MiTicii^ cos 9.

The vertical component Minoii' sin 6 of the centrifugal force of

Ml is not balanced, however. This force is a maximum at the

top and bottom points, where it is

equal to Mincoi^. If the value of Min
were half that of Mr, one-half of the

horizontal force P' would be balanced

and the vertical force at the top and

bottom positions would be only

I MiTiwi^. Since generally the hori-

zontal force is more injurious to the

mechanism than the vertical, the usual

practice is to balance about two-thirds of the horizontal force.

This leaves an unbalanced horizontal force of ^ Mrojj^, and gives

an unbalanced vertical force of | MiTiwi^.

In the ordinary reciprocating engine with connecting rod the

acceleration of the piston at the head end of the cylinder is greater

than roii^ by the amount hy^ = lj^ = -, {roi^), and at the crank

end is less than rcoi^ by the same amount, as may be shown by

the method of Art. 122. The mean value is ro>{-, so the recipro-

cating parts of such an engine are balanced in the same manner

as those of the slotted slider.

Problem 1. The total weight of a single-cylinder horizontal engine is

20,000 pounds and the weight of the reciprocating parts is 1000 pounds. The

crank is 1 foot long and the engine is running at 300 r.p.m. If the engine is

perfectly free to move, what will be the approximate amplitude of oscillation

of the frame and the magnitude of the displacing force at the end of the stroke?

Assume that the reciprocating parts have simple harmonic motion.

Am. 0.63 inch. 30,650 lbs.

Problem 2. If the engine of Problem 1 is balanced according to general

practice, what will be the maximum vertical unbalanced force when running

at 300 r.p.m.? Am. 20,430 lbs.



Aht. 128] TRANSLATION AND ROTATION 195

127. Balancing Both Rotating and Reciprocating Parts. In

the usual type of engine with connecting rod, the rod has a com-

bined rotation and translation. For the purposes of balancing,

the small crosshead end of the rod and one-half of the plain part

of the rod are considered to have a motion of translation with the

crosshead, crosshead pin, piston rod and piston. The large crank

end of the rod and the remaining half of the plain part of the rod

are considered to have a motion of rotation with the crank and

crank pin. In ordinary steam-engine construction the former is

about one-third and the latter two-thirds of the weight of the rod

If the moving parts are to be balanced in the plane of the crank,

the following relation applies. Let Wt be the weight of the re-

ciprocating parts, consisting of the piston, pis-

ton rod, crosshead and one-third of the con-

necting rod. Let Wr be the weight of the

rotating parts, consisting of the crank, crank

pin and two-thirds of the connecting rod. Let

W be the weight of the counterbalance at radius

Vi and let r be the length of the crank. Then
from Arts. 113 and 126,

Wn = Wrr + ^ Wtr.

If there are two crank webs as shown in

Fig. 287, half of W must be in the plane

£E^ -fe

w

Fig. 287

of each.

Problem 1. A piston weighs 300 pounds, the piston rod weighs 100 pounds,

the crosshead weighs 50 pounds, the connecting rod weighs 300 pounds and the

crank pin weighs 30 pounds. Let n = r = 1 foot, and let the arm of the

counterweight balance the crank arm in each case. Determine the counter-

weight for each crank web, the construction being as shown in Fig. 287. If

the cylinder is horizontal, what is the unbalanced vertical force if the engine is

running at a speed of 180 r.p.m.? Ans. 298.5 lbs. 4050 lbs.

128. Balancing of Locomotives. Fig. 288 shows a typical

case in the balancing of locomotives, being that of an outside

cylinder locomotive with six drive wheels. The crank is part

of the middle drive wheel, and by means of the side rod the force

from the connecting rod is transferred to the other two wheels.

The motion is one of combined translation and rotation, and the

effects of the reciprocating and rotating parts upon the frame of

the locomotive are the same as if it were running upon a stationary

testing table. The conditions for balancing are the same as those
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for the stationary engine discussed in Art. 127. For wheels 1 and

3, the rotating parts to be balanced consist of the crank pin and

one-fourth of the side rod. For wheel 2 the rotating parts consist

of the crank pin, one-half of the side rod and two-thirds of the

connecting rod. The counterweight necessary to balance each

may be computed as in Art. 113.

Fig. 288

The reciprocating parts consist of the piston, piston rod, cross-

head and one-third of the connecting rod. As in the case of

stationary engines it is customary to balance two-thirds of this

reciprocating weight in locomotives. There are two methods of

providing for the balancing of the reciprocating parts. One is

to place all of the counterweight for the reciprocating parts upon

wheel 2, combined with the counterweight for its rotating parts.

The other is to divide the counterweight for the reciprocating

parts equally among the three wheels. With the first method the

large unbalanced vertical force due to the heavy counterweight

on wheel 2 produces a heavy kinetic effect upon the track, so in

general the second method is to be preferred.

Problem 1. For a locomotive of the type of Fig. 288, calculate the counter-

weights necessary to balance each wheel, given the following dimensions and

weights: —^ wheel diameter, 72 inches; crank arm, 15 inches; weight of side

rod, 500 pounds; weight of boss and crank pin on wheels 1 and 3, 120 pounds;

weight of boss and crank pin on wheel 2, 150 pounds; weight of connecting

rod, 300 pounds; weight of crosshead, 40 pounds; weight of piston rod, 80

pounds; weight of piston, 200 pounds. Use a radius of 28 inches for the

counterweight in wheels 1 and S, and 27 inches in wheel 2. Divide the counter-

weight for the reciprocating parts equally among the three wheels.

Am. Wheels 1 and 3, TF = 181 lbs. Wheel 2, W = 387 lbs.

Problem 2. What is the hammer blow on the track under each wheel of the

locomotive of Problem 1 if it is running with a speed of 60 miles per hour?

Ans. 3100 lbs.

Problem 3. If the locomotive described in Problem 1, after being properly

balanced, has the coimecting rod taken off, but side rod left on, what is the

hammer blow on the track when being pulled by another locomotive at a

speed of 40 miles per hour? Ans. 1380 lbs. on 1 and 3. 4350 lbs. on 2.
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GENERAL PROBLEMS.
Problem 1. The connecting rod shown in Fig. 289 is 5 feet long and the

crank is 1 foot long. Begin at dead center, with the connecting rod in the

position AM and locate the position of the instantaneous center of the rod for

each 30° of a half revolution.

FiQ. 289

Ans. AM, at A. BN, 3.37 ft. above B. CP, 9.39 ft. above C. DQ, infin-

ity. BiJ, 7.66 ft. below .B. fS, 2.37 ft. below F. GT,a.tG.

Problem 2. If the engine of Problem 1 is running at 100 r.p.m., find the

velocity of the piston at each 30° point by means of the instantaneous center.

Ans. At A, V = 0. B, 6.15 ft. per sec. C, 10 ft. per sec. D, 10.47 ft. per

sec. E, 8.15 ft. per sec. F, 4.32 ft. per sec. G, 0.

Problem 3. Check the results of Problem 2 by the graphic method.

Problem 4. The connecting rod described in Problem 1 weighs 300 pounds,

its center of gravity is 3 feet from the crosshead end and its moment of inertia

with respect to the axis of the crosshead pin is 107.8. What are the crank pin

and guide reactions for the two positions, as follows:— (1) dead center at head

end, horizontal pressure of crosshead pin 12,000 pounds; (2) at 60° from dead

center, horizontal pressure of crosshead pin 8000 pounds?

Am. (1) N = 10,895 lbs.; T = 180 lbs. upward; Na = 120 lbs.

(2) N = 7660 lbs.; T = 273 lbs. downward; Na = 1377 lbs.

Problem 6. A steel cylinder 8 inches in diameter and 3 feet long rests with

each end on a horizontal rail normal to the direction of its axis, as shown in

Fig. 290. If static / = 0.25 and kinetic / = 0.20, determine the motion if a

force P = 150 pounds is applied vertically downward to a rope wrapped

around the cylinder at its middle.

Ans. Cylinder rolls to right. Static F = 100 lbs. a = 6.28 ft. per sec.

per sec.

Problem 6. Solve Problem 5 if the rope is wrapped through 180° more and

the force is applied vertically upward.

Ans. Cylinder slides to right and rotates clockwise. Kinetic F = 72.5 lbs

u, = 4.55 ft. per sec. per sec. a = 29.2 rad. per sec. per sec.
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Problem 7. Solve Problem 5 if the force puUs horizontally to the left on

the rope at the bottom of the cylinder.

Ans. Cylinder slides to left and rotates clockwise. Kinetic F = 102.5 lbs.

"o = 2.98 ft. per sec. per sec. a = 17.9 rad. per sec. per sec.

Problem 8. A plane 10 feet long is inclined at an angle of 15° with the

horizontal. Static / = 0.15 and kinetic / = 0.12. If a cylinder 4 inches in

diameter starts from rest at the top and rolls down, determine the time re-

quired for it to reach the bottom and its linear and angular velocity at the

bottom. Atis. t = 1.865 sec. v = 10.7 ft. per sec. u = 64.2 rad. per sec.

Problem 9. The plane described in Problem 8 is raised to an angle of

24° with the horizontal. Two similar cylinders are released from rest at the

top. The one slides on its base, the other rolls freely. Find the time required

for each cylinder to reach the bottom.

Atis. One slides in 1.44 sec. The other rolls in 1.51 sec.

Problem 10. A plane 20 feet long is incUned at an angle of 30° with the

horizontal. Static/ = 0.25 and kinetic / = 0.20. Two cylinders are released

from rest at the top and allowed to roll down. One is soUd, 6 inches in diam-

eter; the other is hoUow, 6 inches outside diameter and 5 inches inside diam-

eter. Find the time for each to reach the bottom.

Ans. 1.93 sec. for solid cylinder. 2.14 sec. for hollow cylinder.

Problem 11. A cast iron cylinder 6 inches in diameter and 6 inches high

rests on end on a, horizontal plane whose coefficient of kinetic friction is 0.20.

If a force of 20 pounds is applied horizontally to a cord wrapped around the

cylinder, find the linear and angular accelerations.

Ans. a = 8.15 ft. per sec. per sec. a = 82.4 rad. per sec. per sec.

Problem 12. Assume that in the engine described in Problem 1, Art. 127,

the cranks are replaced by disks which need no balancing. Instead of the

balance weights shown in Fig. 287, balancing is to be effected bj' adding one

counterweight to the rim of a large flywheel 30 inches to the left of the plane

of the connecting rod and another to the rim of a small flywheel 24 inches to

the right of the plane of the connecting rod. If the radius of the counter-

weight in the large flywheel is 5 feet and in the small flywheel is 2 feet, find

the weights necessary. Ans. 53 lbs. 166 lbs.

Problem 13. The engine described in Problem 12 has two bearings, the

center of each being 10 inches from the center of the connecting rod. What
is the amount of variation in the vertical reaction of each when the engine is

running at 180 r.p.m.? Ans. 4050 lbs.



CHAPTER XL

WORK AND ENERGY.

129. Work. The work done by a force is the product of the

force and the distance through which the body upon which it acts

moves in the direction of the force.
^F,

In Fig. 291, four forces, Fi, W, N and Je_;^ \w <—-s—
>|

F are shown acting upon a body resting ly
upon a horizontal plane surface. Let

the body move through a distance s to

the right as shown. Then forces W and N do no work upon

the body, since the body does not move in the direction of either

force. The work done by force Fi is equal to Fi X s cos 8, since

s cos 6 is the distance the body moves in the direction of the

force Fi.

Since FiXs cos 6 = Fi cos dXs, and Fi cos d is the component of

Fi in the direction of s, it may also be stated that the work done by
a force is equal to the product of the distance moved through

by the body and the component of the force in that direction.

If the displacement is in the same direction as the working com-

ponent of the force, the work is positive, as in the case of Fi above,

and the work is said to be done by the force. If the displacement

is in the direction opposite to the working component of the force,

the work is negative, as in the case of the frictional force F above.

The work is said to be done against the force, and is equal to —Fs.

If the force is variable, the work done in a small distance ds is

F cos 8 ds as before, 6 being the angle between the direction of the

force and the direction of the motion. The total amount of the

work done by the force is j F cos d ds. If the relation between

F, 8 and s is known, this expression can be integrated.

For a rotating body, ds = r d4>, 4> being the angle between the

radius and a fixed axis through the center of rotation, hence

Total Work = j F cos 8 ds = j Fcosdr d^.

199
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But Fr cos d is the torque M of the force F about the axis of rota-

tion, 6 being the angle between F and the tangent, so

Total Work = Cud^.

If there are several forces producing rotation, M is the resultant

torque. If the torque M is constant, this becomes

Total Work = M<l>,

<j) being the total angle in radians described by the radius. The

work done in one revolution is 2 tM = 2 TrF cos 6=2 irrFt, Ft

being the tangential component of F. The normal component F^

does no work.

The work done on a body against gravity in raising it through

any distance is equal to the product of the weight of the body and

the vertical distance h through which it is raised, irrespective of its

lateral motion. In Fig. 292, the body B is moved along the path

ABC in a vertical plane. The work done against gravity in the

distance ds is equalto Wds cos 6, and the total work is

W fdscosB = W f dy = Wh.

When a body is lowered, gravity does positive work upon it

and the amount of the work is equal to the product of the weight

of the body and its vertical displacement.

"r^°

>> —

^

FiQ. 292 Fig. 293

If a body of weight W is composed of any number of small parts

with weights Wi, w^, Ws, etc., which are raised through different

heights, the total amount of work done^is equal to the product of

the entire weight W and the distance H through which the center

of gravity is raised. In Fig. 293, let hi, h, hs, etc., be the heights

of Wi, Wi, W3, etc., above a chosen base line before they are lifted,

and W, W, hs, etc., their heights above the same plane after being

lifted. Then the total work is given by
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Wi {W - hi) + Wi Q12' - hi) + Wi {hi - hi) + etc.

= {wihi' + wjii + wjii + etc.) — (wihi + wjii + wjii + etc.)

= Wh' - Wh
= WH.

The unit of work is the work of one unit of force through one

unit of distance. In the English system the foot-pound is the

unit most generally used. In the c.g.s. system the unit is the erg,

which is the work done by a force of 1 dyne acting through a dis-

tance of 1 centimeter.

Problem 1. In Fig. 291, TF = 1200 pounds and / = 0.30. If 9 = 30° and

s = \ inch, find the amount of each force and the work done by it if the motion

is uniform. Ans. Fi = 502 lbs.; 36.3 ft.-lbs. F = 435 lbs.; -36.3 ft.-lbs.

Problem 2. What is the work done against gravity in pulling a 100,000-

Ib. car at uniform speed up a 2 per cent grade a distance of one mile? If train

resistance is 6 pounds per ton, what is the total work done by the drawbar

pull? Ans. 10,560,000 ft.-lbs. 12,144,000 ft.-lbs.

Problem 3. A vertical mine shaft 6 feet square is driven through 120 feet

of clay, 80 feet of shale and 20 feet of sandstone. The material is raised 20

feet above the mouth of the shaft. If clay weighs 100 pounds per cubic toot,

shale 120 pounds per cubic foot and sandstone 150 pounds per cubic foot, what

is the total worlj done? Ans. 121,608,000 ft.-lbs.

Problem 4. A cable 200 feet long weighing 2 pounds per foot passes over

a pulley with 50 feet hanging on one side and 150 feet on the other. What
work is done against gravity as the pulley is rotated until the middle of the

cable is at the pulley? Ans. 5000 ft.-lbs.

130. Graphical Representation of Work. Since work is the

product of force and displacement, both of which are vector

quantities, the graphical representation of

work is made by means of an area. In

Fig. 294, let AB represent the displace-

ment s to some scale, and let AC represent

the magnitude of the force to some scale, a
'

Distance b
If the force is constant, the area ABDC pjg 294
represents to scale the work done, since it

is the product of AB and AC. If AB represents 4 feet and AC
represents 3 pounds, the area of each small rectangle represents 1

foot-pound of work and the whole area represents 12 foot-pounds

of work.

If the force varies in magnitude, the ordinates will not be the

same height, but the area will still give the work done. By cal-

culus, the area under the curve which has abscissae s and ordinates

c
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F is equal to
f
F ds. By Art. 129 this is the expression for the

work done if the angle 6 is zero. The simplest case is that in which

the force varies as the distance, increasing from zero to a maxi-

mum or decreasing from an initial maximum to zero. The dia-

gram for this case is a triangle, Fig. 295, in which the ordinate

AB represents to some scale the maximum value of the force F,

which has increased uniformly from zero. The work done is

represented by the triangular area OBA, which is equal to | AB X
OA. In terms of the maximum force i^i and the total distance Si,

Work = \ Fisi.

If the relation between F and s is not known, as in the steam

indicator diagram, Fig. 296, the area may be calculated approxi-

mately either by Simpson's One Third Rule or by dividing the

area into a large number of narrow strips and considering each

a trapezoid. An easy method and the one most commonly used

is to measure the area with a planimeter.

<-

—

,s -dk-ois
Distance

Fig. 295 Fig. 296

Let AB, Fig. 296, be the atmosphere line. Then an ordinate

to the top line, as NK, represents to scale the pressure in the

cylinder when the piston was at that point in its travel moving
to the right, so the area ADEB represents the gross work of the

steam. The ordinate to the lower line, as NH, represents the

pressure on the same side of the piston at that point in the return

stroke. This back pressure does negative work, represented by
area ADCHB, so the net work is that done on the forward stroke,

minus that done on the back stroke, represented by area CDKEH.
Problem 1. Draw the diagrams for the Problems of Art. 129.

Problem 2. A force is applied to a 20,000-pound spring to compress it

2i inches, then released i inch. (A 20,000-pound spring is one which will be
compressed 1 inch under a static load of 20,000 pounds.) Draw the diagram
and from it compute the gross work, the negative work and the net work.

Ans. 50,625 in.-lbs. gross. 5469 in.-lbs. negative.

131. Energy. Energy is the capacity to do work. If a weight
has capacity to do work on account of its position above a chosen
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datum plane, its energy is called 'potential energy. If released

frona its support it may be made to do positive work in descending

to its zero position. The steam in a boiler and a spring under
compression are said to have potential energy, due to their stressed

condition.

A moving body, by virtue of its velocity, has capacity to do
work as it is brought to rest. This energy of motion is called

kinetic energy.

In addition to these two forms of energy, sometimes called

mechanical energy, several other forms may be classified. Thermal

energy is the capacity to do work on account of the heat possessed

by the body. Chemical energy is the capacity of substances to do
work by combining chemically, as hydrogen and oxygen, which
combine with an explosive force. Electrical energy is the capacity

of a body to do work due to its electrical condition, as, for instance,

a charged storage battery. These other forms of energy are in

reality but different manifestations of kinetic energy, and all the

forms mentioned are mutually convertible.

132. Relation Between Work and Kinetic Energy. Since

kinetic energy is the capacity of a body to do work on account of its

motion or velocity, the amount of its kinetic y

energy is necessarily equal to the amount of

work done by the positive acting force or

forces in producing that velocity. In Fig. 297

let F be the resultant force which acts upon a ^^- ^^^

particle of mass to to produce the velocity v in the distance s. Then

the work done by the resultant force is equal to f
F ds. Since

i Jo
F — Ma and ads = v dv,

F ds =
I
ma ds = j mvdv — i mv^.

Jo Jo

So in terms of the velocity the work done is equal to J mv^, which

is the kinetic energy of the particle.

133. Kinetic Energy of Translation. Forces Constant. The
kinetic energy of a body at any instant is equal to the sum of the

kinetic energies of the particles of which it is composed. In a

motion of translation, each particle of the body has the same

velocity at any instant, so the total kinetic energy is

K.E. = S i my2 = 1 v^I,m = i Mv%

M being the mass of the whole body.

-^/f
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Let F, Fig. 298, be the resultant of all the working forces acting

upon a body of mass M as it moves from A to B through the

distance s. Let Vo be its velocity at A and v its velocity at B.

. V V. Then

B^ M Fds = \ Mv dv.
Jva

Fig. 298
jT' F ds = § Mv^ - i Mvo^.

I Mvi? is the kinetic energy of the body at A and \ Afw^ is its

kinetic energy at B, so the following general statement may be

made :
—

In any motion of translation the -positive work done by the resultant

force is equal to the increase in kinetic energy.

If i^ is constant, / F ds = Fs, so

Fs = i Mv2 - 1 Mvo^

It is usually simpler in any given problem to consider separately

the work of the several forces acting upon the body instead of the

work of their resultant. Let Fi, F^, etc., be the forces and Fi,

Fi', etc., their components in the direction of the motion of the

body.

Work = CFi' ds + Cf^' ds + etc.

If the forces are constant and act through distances Si, S2, etc.,

respectively, in the direction of the motion of the body,

Work = Fi'si + Fi'Si + etc.

If some of the forces are resistances, their work is negative.

In any motion of translation the work done by the positive forces

minus the work done by the negative forces is equal to the increase in

kinetic energy.

This may be written

Positive Work - Negative Work = Final K.E. - Initial K.E.

If the term \ Mva^ is transferred to the other side of the equa-

tion, it may be written

Initial K.E, + Positive Work — Negative Work = Final K.E.

EXAMPLE.
An 80,000-pound car is hauled up a 2 per cent incline by a constant draw-

bar pull of 1000 pounds. If the train resistance is 6 pounds per ton and the
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initial velocity is 20 feet per second, how far up will it go before its velocity is

reduced to 10 feet per second?

Solution:— Imtial K.E. = ^MV =
^^^f^ X 20^ = 497,000 ft.-lbs.

Positive work = 1000 s, if s is the distance in feet.

Negative work of train resistance = 240 s.

Negative work of gravity = —'^— s = 1600 s.

Final K.E. = 1 i/v' = i^^ X 10^ = 124,200 ft.-lbs.

Then 497,000 + 1000 s - 240 s - 1600 s = 124,200.

840 s = 372,800.

s = 444 ft.

Problem 1. A body weighing 100 pounds rests upon a horizontal plane for

which the kinetic coefficient of friction / = 0.10. If a force of 15 pounds is

appUed horizontally, what is the velocity of the body 10 feet from the initial

position? Ans. 5.67 ft. per sec.

Problem 2. A body is released from rest at the top of a 45° plane 10 feet

long for which kinetic / = 0.25. What is the velocity at the bottom?

Ans. 18.47 ft. per sec.

Problem 3. If a body is projected with a velocity of 20 feet per second

along a horizontal plane for which kinetic / = 0.15, how far will it go?

Ans. 41.4 ft.

Problem 4. A piston, piston rod and one-third of connecting rod weigh

360 pounds. If the maximum velocity of the piston is 15 feet per second,

what is its kinetic energy? Is this energy lost? Ans. 1259 ft.-lbs.

Problem 6. If the drawbar pull on the car in the Example above is removed
when the velocity is 10 feet per second, how much farther up the incline will

it go? If then allowed to run back, with what velocity wUl it reach the bottom?

Ans. 67.6 ft. v = 23.6 ft. per sec.

134. Kinetic Energy of Translation. Forces Variable. If

some of the forces acting upon a body during its motion are varia-

ble, the relation between work and change in kinetic energy

becomes

/'F ds = ^ Mv^ - h Mvo''.

If F varies with s, it must first be expressed in terms of s if the law

of its variation is known, and then the expression integrated.

If a spring is deformed, the resistance it offers is proportional

to the amount of its deformation. Hence, if a spring is the means
of applying a force to a body, the amount of the force will be some
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constant C multiplied by the distance deformed s,otF = Cs. The
work done by the force is

i Csds = ^=^s.

This is the product of the average force and the distance.

If one of the forces is steam, working expansively, theoretically

the absolute pressure varies inversely as the distance from the end

of the cylinder, so the amount of the force during expansion is

equal to some constant Ci divided by the distance s from the end

of the cylinder, or F = —. An example of each of the cases men-
s

tioned will better illustrate the method of solution.

EXAMPLE 1.

A body weighing 150 pounds falls 8 feet from rest and strikes a 2000-pound
spring. What is the deformation of the spring?

Solviion:— The body and spring are shown in Fig. 299. The body is at

rest before starting to fall, hence has zero kinetic energy. When the spring

^ has its maximum compression, the body is again at rest and has

zero kinetic energy. The resistance of the spring is 2000 X
displacement in inches, or 24,000 X displacement in feet. If s is

the displacement in feet, the resistance of the spring is 24,000 s.

Then

150 X 8 + 150 s - C 24,000 sds=0.
Jo

1200 + 150 s = 12,000 s\

s = 0.3224 ft. = 3.87 in.

Fig. 299
The velocity at any point, as when the compression is 1 inch,

may be found by equating the resultant work to the kinetic energy.

150 X 8.083 - ^^24,000 8^8 = ^ ||5 ^.

« = 22 ft. per sec.

EXAMPLE 2.

Fig. 300(a) represents a steam hammer. The ram and piston weigh 500
pounds. The piston is forced downward by a steam pressure of 10,000 pounds
against an air resistance of 1000 pounds. The stroke S2 is 18 inches. Con-
sidering cut-off when si = 6 inches, find the velocity of the hammer as it strikes

the metal, assuming pressure X volume = constant for steam after cut-off,

and neglecting clearance volume and friction.
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Solution:— The work of the positive forces minus the work of the resisting

forces is equal to the increase in kinetic energy. The weight and the steam

pressure are the positive forces, the at-

mospheric pressure is the resisting force

and its total kinetic energy at striking

is the increase in kinetic energy, since

2)0 = 0.

In Fig. 300(b), ordinate DB represents

the initial steam pressure Pi, ordinate

BA represents the force of gravity and

ordinate AC represents the resisting

force of the air. Then area DCEFG
represents the resultant work done on

the hammer till the point of striking.

The work of gravity = 500 X li =
750 ft.-lbs. The work of steam to cut-

off = Pisi = 10,000 X i = 5000 ft.-lbs.

The work of steam after cut-off = I Pds, P being the variable pressure. Since

the pressure varies inversely as the volume, it also varies inversely as the

distance from the end of the cylinder, or

Fig. 300

P
Pi

Sl_

s

PiSi 5000

J'1.5
—̂-,

0.6 S

= 5000 lege i|

= 5000 loge 3

= 5000 X 2.3 logio 3

= 5000 X 2.3 X 0.477

= 5490 ft.-lbs.

The negative work of atmospheric pressure = 1000 X 1.5 = 1500 ft.-lbs.

Work of gravity -|- work of steam — work of air = j Mw'.

750 + 5000 + 5490 - 1500 =
|^ J*'

V = 35.4 ft. per sec.

Problem 1. A body weighing 800 pounds falls 2 inches and strikes upon a

3000-pouiid spring. What is the deformation? Ans. IJ inches.

Problem 2. A car weighing 80,000 pounds moving with a speed of 2 feet

per second strikes a bumping post. Assuming the drawbar spring to take all

the compression, what must be its strength in order that the compression shall

not exceed 2 inches? Ans. 29,800-lb. spring.
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Problem 3. A 100,000-pound car moving with a speed of 2 miles per hour

strikes a bumping post. If equipped with a 40,000-pound spring, will all the

shook be taken by the spring if the travel of the spring is 2.5 inches?

Ans. No, 2.83 in. required.

Problem 4. A steam hammer has the following dimensions: Weight of

piston and ram, 2000 pounds; diameter of piston, 13 inches; diameter of

piston rod, 2 inches; stroke, 36 inches; absolute steam pressure, 100 pounds

per square inch; air pressure below piston,.15 pounds per square inch; cut-off

at quarter stroke, expansion adiabatic. Neglecting clearance volume and

friction, determine the velocity of striking. Ans. 27A ft. per sec.

135. Kinetic Energy of Rotation. Let Fig. 301 represent any

body rotating about axis with angular velocity oj. The velocity

of any particle of mass dM at a distance p from the axis is pco, and

its kinetic energy is -| dMpW. The total kinetic energy of the

body is then / 1 dMpW. Since to^ for all the particles at any

instant is the same, and since / dMp'' = h,

K.E. of rotation = | Joco^.

The value of 7o may be computed by the regular methods of

integration if the form of the rotating body is regular. If not,

it may be determined by experiment, as in Art. 79.

Fig. 301 Fiq. 302

In order to determine the relation between work and kinetic

energy of rotation, the same principle is made use of as in the

case of kinetic energy of translation. Art. 133. Let F, Fig. 302,

acting at distance r from the fixed axis be one of a system of

forces producing rotation. Then the total work as shown in Art.

129 is

f'
Mdd.

Since M = la (Art. 105) and adJd^oidoi (Art. 100),

\Md!9= jlade= jIo}do}.



Art. 135] WORK AND ENERGY 209

By integration,

/Mde = Uco^-U...

This principle may be stated as follows:—
In any motion of rotation, the positive work is equal to the increase

in kinetic energy.

EXAMPLE 1.

A flywheel and shaft weighing 1800 pounds are rotating in bearings at

80 r.p.m. The shaft is 3 inches in diameter and the radius of gyration of the

shaft and wheel is A; = 2.5 feet. If the coefficient of friction / = 0.01, how
long will the wheel rotate?

Solution:— The only force is friction, a resisting force. In one revolution

its work is fN X 2 irr, so in n revolutions its work is 0.01 X 1800 X 2 tt X
0.125 n, or 14.16 n ft.-lbs. The decrease in kinetic energy is the amount of the

initial kinetic energy, or § loP.

I = Mk'=~X 6.25 = 349.

80X27r
" = —60— = 8.39.

«' = 70.3.

i /a.2 = 12,280 ft.-lbs.

Then 14.16 n = 12,280.

n = 867 revolutions.

Since its acceleration is constant, the average r.p.m. = 40. The time re-

quired for 867 revolutions is given by 867 -^ 40 = 21 min. 40 sec.

Problem 1. What is the kinetic energy of a steel cylinder 4 inches in

diameter and 6 feet long when rotating at 240 r.p.m? Ans. 34.95 ft.-lbs.

Problem 2. Compute the kinetic energy of the flywheel shown in Fig. 207
when rotating at 120 r.p.m. Ans. 5896 ft.-lbs.

Problem 3. A cast iron cylinder 1 foot long and 1 foot in diameter is

fastened to a horizontal shaft through its geometric axis. The shaft is 1 inch

in diameter and rests in bearings for which the coefficient of friction/ = 0.015.

If a cord is wrapped around the cylinder and a force of 10 pounds is applied at

the end of the cord during one revolution, what will be

the speed of rotation of the cylinder? (Neglect the

pull on the cord in computing the work of friction.)

Ans. 63.1 r.p.m.

Problem 4. Solve Problem 3 if the 10-pound force is

replaced by a 10-pound weight. Ans. 61.5 r.p.m.

Problem 5. Fig. 303 represents a pulley 2 feet in

diameter fastened to another 4 feet in diameter and

free to rotate about their common geometric axis, 0.

Their combined weight is 200 pounds and their radius p qqo

of gyration is 1.5 feet. If a weight of 300 pounds is

hung from a cord wrapped around the smaller cylinder and another of 100

pounds to a cord wrapped around the larger cylinder in the opposite direction,
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find the speed of rotation after the 300-pound weight has moved 2 feet from

rest. Neglect axle friction. Ans. 31.96 r.p.m.

Problem 6. A slender rod 5 feet long weighing 20 pounds is free to rotate

about an axis normal to the rod one foot from the end. If the rod is released

from rest in the vertical position with the center of gravity above the support,

with what velocity will it pass through the horizontal position? What veloc-

ity will it have when it reaches its lowest position?

Ans. 4-.72 rad. per sec. 6.68 rad. per sec.

136. Kinetic Energy of Rotation and Translation. A body

which has a motion of combined rotation and translation may be

considered at any instant to be rotating about its instantaneous

axis. As in Art. 135, its kinetic energy at that instant is given

by § lea'', I being the moment of inertia with respect to the instan-

taneous axis. Since the instantaneous axis is not fixed in the

body, it is in general difficult to determine I for the different

instantaneous axes, so a transformation is made.

Since I = Ig -\- Mr^ and v = rw, Ig being the moment of inertia

of the body with respect to the gravity axis parallel to the in-

stantaneous axis, r the distance between them and v the absolute

velocity of the center of gravity,

K.E. = 1 7a,2 = 1 7„co= + 1 M'r^^^

The term J ikfw^ is the expression for the kinetic energy the body
would have if moving in translation with velocity v, and the term

\ Igui^ is the kinetic energy it would have if rotating about a fixed

axis through the center of gravity parallel to the instantaneous

axis. Hence the kinetic energy of a body with any plane motion

is equal to the sum of the kinetic energies of translation and of

rotation about the center of gravity.

EXAMPLE.

A wheel 2 feet in diameter weighing 100 pounds starts from rest and rolls

freely down a 30° incline. If the plane is 10 feet long and the radius of gyra-

tion k = 0.8 foot, what is the velocity of the center of the wheel as it reaches

the bottom? What is the kinetic energy of rotation? Of translation

?

Solution:— The vertical height A = 5 feet, so the work of gravity is 100 X
5 ft.-lbs.

The frictional force F and the normal resistance N do no work, since their

point of application is at rest.

1 = Mk\ so

500 = hMv^ + i Mk^o>\
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For free rolling, v = ru = u; also M — np^'

V = 14.02 ft. per sec.

K.E. of rotation = i MkW = 195 ft.-lbs.

K.E. of translation = I Mv' = 305 ft.-lbs.

Problem 1. Solve for the velocity of the disk in Problem 1, Art. 121, by
the method of this article.

Problem 2. A solid sphere 2 feet in diameter weighing 100 pounds rolls

freely down a 30° incline 10 feet long. Find its linear velocity at the bottom.

Ans. 15.16 ft. per sec.

Problem 3. What is the kinetic energy of a cast iron disk 2 feet in diameter

and 4 inches thick which rolls along a level floor with a velocity of 10 feet per

second? Ans. 1098 ft.-lbs.

Problem 4. The connecting rod of Problem 2, Art. 79, and Problem 1,

Art. 123, weighed 267 pounds and its center of gravity was 48.5 inches from

the crosshead pin. By experiment, / with respect to the axis of the crosshead

pin was found to be 157. The crosshead to which it was attached weighed

100 pounds, the piston rod weighed 70 pounds and the piston weighed 290

pounds. Find the total kinetic energy of the piston, piston rod, crosshead and

connecting rod at dead center (head end), at 45° and at 90°.

Ans. 775 ft.-lbs. 2774 ft.-lbs. 4015 ft.-lbs.

Problem 6. A freight car weighing 80,000 pounds has four pairs of wheels

like those described in Problem 1, Art. 79. Find the percentage of error if the

rotational component of the kinetic energy of the wheels is neglected in com-

puting the total kinetic energy of the car. Ans. 0.59 of 1 per cent.

137. Work Lost in Friction. Friction is tlie great reducing

agent by means of wiiich kinetic energy is dissipated in the form

of heat. When two surfaces move over each other the mutual

friction reduces the total kinetic energy by an amount equal to

the product of the frictional force and the relative motion. Let

the crosshead of a locomotive have an average pressure on its

guides of 500 pounds and let the coefHcient of friction / = 0.01.

If the crank is 1 foot long, the relative distance vs^hich the cross-

head moves over the guides during the forward stroke is 2 feet.

The work lost in friction between the crosshead and guides is

then 0.01 X 500 X 2 = 10 ft.-lbs. This cannot be recovered in

the form of useful work in another part of the motion as in the

case of the work required for accelerating the piston, for the friction

changes direction and the same amount more is lost during the

return stroke.

The brake shoe testing machine, Fig. 304, consists of a heavy

drum A rigidly fastened to an axle 0, to which is also fastened a

car wheel B. By means of the levers C and D the weight P
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Fig. 304

applies a normal pressure to the rim of the wheel through the brake

shoe E. The weights and dimensions are known, so the kinetic

energy may be computed when the angular velocity is known.

The weight of the rotating drum is 12,600 pounds, practically the

same as i of a 100,000-pound car,

or the part supported by one wheel.

The material is so arranged that

its rotary kinetic energy is the

same as the translatory kinetic

energy of the same weight would

be if it had the same speed as the

rim of the wheel. The require-

ment for this is that 1 7co^ = i Mv^.

Since I = Mk^ and v = rco, it is necessary that fc = r, so the drum
is built in such a way as to make k = 1.375 feet, the radius of

the standard car wheel. The brake shoe on the testing machine

is under the same conditions as in service.

The axle is connected to an engine by means of a clutch so that

any desired speed may be given to it, after which the engine may
be disconnected. The drum and wheel will then rotate freely

until the weight of P is applied which presses the brake shoe E
against the wheel. The arrangement of the levers is such that a

weight P at the end of the lever produces a normal pressure of

24 P at E. In addition, the weight of the levers themselves

produces a normal pressure of 1230 pounds. Let the total

normal force be iV". Then the frictional drag of the shoe upon the

wheel is fN, f being the kinetic coefficient of friction, and the

work of the frictional force is fNw ff ft.-lbs. in one revolution.

Some work is done also by the frictional force at the bearings.

The pressure here is 12,600 -\- N. The axle is 7 inches in diameter

and if /i is the coefficient of friction the work lost in one revolution

will be /i (12,600 + N) t t\ ft.-lbs. The work of friction at the

two points dissipates the kinetic energy of the drum and wheel.

That at the brake shoe is, of course, much the larger. The
kinetic energy is transformed into heat, sometimes making the

surface of the shoe red hot.

If n is the number of revolutions of the wheel, the work-energy

equation for the motion becomes

K.E. = work of friction,

i /w^ = fNirn X ft -h/i (12,600 -^ iV) tto X I's
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Problem 1. Use / = 0.25 and /i = 0.005 for the brake shoe machine

described above. If the rim speed of the wheel is 60 miles per hour, what
weight P will bring the wheel to rest in 100 revolutions? Ans. 237 lbs.

Problem 2. If the rim speed of the wheel on the testing machine is 75 miles

per hour and with 300 pounds at P is brought to rest in 120 revolutions, what
is the value of/? Use the same value for/i as above. Ans. f = 0.268.

Problem 3. If force P in Problem 2 is 600 pounds, in what distance will

the wheel be stopped when running with a rim speed of 90 miles .per hour?

Ans. 809 ft.

138. Braking of Trains. A train which is running at a high

rate of speed has a large amount of kinetic energy which has been

given to it by the work of the steam in the cyHnders, or if on a

down grade, by gravity also. When the train is to be stopped, all

.Ca}WheelRolling (b)WheelSkidding

Fig. 305

this kinetic energy must be used up again in work. The usual

method is to press brake shoes against the rims of the wheels and
so transform the kinetic energy of the train into heat at the

rubbing surfaces. The force of friction does work of retardation

equal to jNs, / being the coefficient of friction, N the normal

pressure of the brake shoe on the wheel and s the distance traveled

by the rim of the wheel relative to the brake. The action is a

tendency to check the rotation of the wheel, so that a backward
static frictional force is developed at the point of contact of the

wheel and the rail. This force of the rail on the wheel is the one

which actually stops the train, but it does no work since its point

of application does not move in the direction of the force. The
maximum braking force is exerted when skidding of the wheel is

impending, but the wheel is still rolling, as in Fig. 305(a), for then

the limiting or maximum value of the static friction at the rail is

induced. If the friction at the axle is neglected, the equation of

moments about the axle shows that the two frictional forces Fj

and F are equal when the wheel is uiider static conditions.
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If now the normal force on the brake shoe is sHghtly increased,

the frictional force at the shoe will become slightly greater and the

wheel will skid, as in Fig. 305(b). There is now kinetic friction

between the wheel and the rail which is less than static friction,

so resistance to motion is less. The work is being done at the

point of contact of the wheel and the rail instead of at the surface

of the brake shoe as before, while the brake shoe does no work and

is not worn. Skidding of the wheels, besides being much less

efficient in stopping the train, causes injurious flat spots to be

worn on the wheel.

The coefficient of friction between brake shoes and car wheels

is extremely variable on account of the following factors:—
material of the shoe, material of the wheel, initial speed of the

train, speed of the wheel at the time considered and weather con-

ditions. Just before the wheel is stopped the coefficient is con-

siderably higher than the average for the stop. At high speeds

the coefficient is much less than at low speeds, due to the heating

of the material at the rubbing surfaces.

The following table gives average results from some M. C. B.

Association tests upon several different kinds of brake shoes, at

two different speeds.

Speed (mi./hr.)
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the brake shoe should not be greater than the weight carried by
the wheel if skidding of the wheel is to be avoided.

Problem 1. A wheel carries a load of 10,000 pounds. It the static coeffi-

cient of friction /i between the wheel and the rail is 0.30 and the maximum
value of the kinetic coefficient of friction / between the wheel and the brake

shoe is 0.40, what is the maximum allowable normal brake shoe pressure?

Ans. N = 7500 lbs.

Problem 2. A 1000-ton train while running at a speed of 30 miles per hour

down a 0.5 per cent grade has brakes applied so that the train is brought to

rest in 1200 feet. What is the total induced resisting force required, train

resistance being 10 pounds per ton? Ans. 50,000 lbs.

Problem 3. If the coefficient of static friction between wheel and rail is

0.25, what would be the shortest distance in which the train of Problem 2 could

be stopped? Ans. 123 ft.

139. Power. Power is the rate of doing work, or the amount
of work done per unit of time. If a weight of 100 pounds is lifted

10 feet, the work done is the same whether it is lifted in 1 second

or in 5 seconds. The power required, however, is different. In

the first case the power is 1000 foot-pounds per second, while

in the second it is 200 foot-pounds per second.

The unit of power is the unit of work developed in the unit of

time. In the English system it is, therefore, the foot-pound per

second (abbreviated ft.-lb. per sec.) This is too small a unit for

some engineering work, so the larger unit of the horsepower is also

used. The horsepower is 550 foot-pounds of work per second, or

33,000 foot-pounds of work per minute. In electrical work the

unit of power commonly used is the watt, which is 10' ergs per

second, or the kilowatt, which is 1000 watts. 1 h.p. = 0.746 kw.,

or approximately J kw. If a force F moves through distance ds

ds
in dt time, its rate of doing work or its power is F tt = Fv. So if

F is in pounds and v in feet per second,

Fv
Horsepower = -p^r^r-

ooU

Due to friction a certain amount of the energy supplied to a

machine is lost, so the amount delivered by it, the output, is less

than that delivered to it, the input. The ratio of the output to

the input for a given length of time is called the mechanical

efficiency.

Efficiency = ^
^

•
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Problem 1. If a hoisting engine lifts a mine cage weighing 600 pounds 500

feet in one minute, what horsepower is expended? If an indicator shows that

10.5 horsepower is being developed, what is the efficiency of the engine and

hoLst? Ans. 9.09 h.p. 86.5 per cent.

Problem 2. Find the amount of useful work done by a pump which dis-

charges 300 gallons of water per minute into a tank 200 feet above the intake.

Ans. 15.22 h.p.

Problem 3. The driving side of a belt has 800 pounds tension and the slack

side has 350 pounds. If the pulley is 2 feet in diameter and has a speed of

240 r.p.m., what horsepower is being transmitted? If it is driving a dynamo
which has an efficiency of 85 per cent, how many kilowatts are being dehvered?

Ans. 20.6 h.p. 13.08 kw.

Problem 4. An engine hoists 6 cubic feet of concrete and a 150-pound

bucket 15 feet in 10 seconds. If concrete weighs 125 pounds per cubic foot,

what horsepower is the engine delivering? Ans. 2.46 h.p.

140'. Water Power. If a stream of water has a cross-sectional

area of A square feet and a velocity of v feet per second, the cubic

feet of water flowing past any point in one second is Av and its

weight is 62.5 Av. Therefore, the kinetic energy per second, or

power, is

1 W— j;2 = 0.97 Av' foot-pounds.
2 g

If the velocity of the water as it reaches any certain point could

be entirely destroyed in doing useful work, the horsepower gen-

erated would be --„—
550

If a flowing stream has a vertical fall of h feet and W is the weight

of water flowing per second, the number of foot-pounds of work
Wh

per second is Wh. Then h.p. = ^^^7:-
ooU

Problem 1. A river has a cross-sectional area of 90 square feet and a

velocity of 8 feet per second above a fall which has a drop of 6 feet. What is

the theoretical horsepower that could be developed? Ans. 572 h.p.

Problem 2. A 2-inch nozzle discharges water under a head of 1200 feet.

The stream impinges upon a Pelton wheel which has an efficiency of 80 per

cent, and the Pelton wheel is cormected to generators which have an efficiency

of 90 per cent. How many kilowatts can be delivered at the switchboard?

Ans. 444 kw.

Problem 3. If a volume of 300 cubic feet of water per second under a head

of 40 feet flows through turbines which have an efficiency of 85 per cent, what
horsepower will they deliver? Ans. 1160 h.p.

141. Steam Engine Indicator. The steam engine indicator is.

an instrument for recording graphically the steam pressure and
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piston travel of a steam engine. In Fig. 306, OX is tlie axis of

zero absolute pressure. AB is the line showing atmospheric pres-

sure, and its length represents to some scale the piston travel.

The ordinate FA represents to some scale

the steam pressure when the piston was at

the corresponding point in its stroke. As

shown in Art. 130, the area GCDE repre-

sents the net work done by the steam. „ --
r,-- ./.---

This area divided by the length AB will

givetheaverage ordinate, which multiplied

by the scale of the spring will give the mean effective pressure.

This is the pressure which, if exerted through the whole stroke,

would have done the same amount of work.

Let P represent the mean effective pressure in pounds per

square inch, I the length of the cylinder in feet, a the area of the

piston in square inches and n the number of revolutions per

minute made by the flywheel. Then Pa is the total pressure in

pounds and Pla is the work done in one revolution by the steam

on one side of the piston. Plan is the work done in one minute

Plan
and 55-717^ is the horsepower generated. This is called the indi-

cated horsepower (I.H.P.). If the piston rod extends both ways

from the piston so that the areas are the same and the mean
effective pressures are the same, the total power generated in

the cylinder is ^^tjtjt^- If, as is commonly the case, the pressures

and areas are different, the horsepowers of the two ends are com-

puted separately and added.

Problem 1. The mean effective pressure of an engine is 80 pounds per

square inch; the crank is 12 inches long; the cylinder is 7 mches in diameter;

the piston rod is 1.5 inches in diameter and extends entirely through the

cyUnder. If the engine is running at 150 r.p.m., what is the indicated horse-

power? Ans. 53.4 h.p.

Problem 2. At the crank end of the cylinder of an engine the mean effective

pressure is 115 pounds per square inch and at the head end is 110 pounds per

square inch. The length of the crank is 1 foot, the diameter of the cylinder

is 1 foot and the diameter of the piston rod is 2 inches. The piston rod

extends only one way from the piston. If the speed of the engine is 90 r.p.m.,

what horsepower is it developing? Ans. 137 h.p.

142. Absorption Dynamometer. An absorption dynamometer

is an instrument for measuring the output of power of prime
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movers, such as steam engines, electric motors and water wheels.

It absorbs all the energy generated and transforms it into heat of

friction. The most common form of absorption dynamometer

is the Prony brake, Figs. 307 and 308.

The simple construction of Fig. 307 is

best for small, high-speed machines, as

motors and small gas engines. By
tightening the hand wheel B, the

blocks of which the brake is composed

are clamped against the wheel and the

friction developed tends to turn the

brake around with the wheel. This

tendency is resisted by the pull of the

weight W, hinged at C. The hand wheel B is tightened until all

of the work done by the prime mover is used up in the heat of

friction at the rim.

Let F be the total friction generated. Then the work absorbed

in one revolution is i^X2 Trn, and if n is the number of revolutions

per minute the horsepower is given by

i^ X 2 rrin

Fig. 307

o-~>A

h.p.
33,000

about 0, and Tr^ = Wrisind byBut Fri = Trz, by moments
moments about C, so

, _ 2 TrnWriTj sin 6
^P- ~ 33,000 ra

Instead of being graduated in degrees, the arc may be graduated

to read T directly, or, more simply, the frictional force F.

The brake shown in Fig. 308 is used for larger sizes of flywheels.

Fig. 308

It is composed of small blocks of wood fastened to a strap encir-

cling the wheel and attached to a V-shaped lever arm, CDA. To
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apply the brake, the ends of the band at E are drawn together

by turning the hand wheel B. As before,

Fri = Pr„

2 TnPri
so h.p. =

33,000

The force P is the net force due to friction alone after the weight

of the brake arm has been balanced. It is usually measured by
resting the lever arm on a platform scale, or by suspending it from

a spring scale above.

Since some of the work done by the steam in the cylinder is

used up in friction of the moving parts of the engine, the brake

horsepower will necessarily be less than the indicated horsepower.

The mechanical efficiency is the ratio of the brake horsepower to

the indicated horsepower, or

Efficiency = j'jj'p' -

P'roblem 1. In a brake of the style of Fig. 307, n = 3 inches, r^ = 2 feet,

ra = 3 inches, rt = 14 inches and TF = 10 pounds. If balanced so that the

pointer is vertical with no load, at what angles should the calibration marks

be placed for F = 50 pounds; F = 100 pounds; F = 150 pounds; F = 200

pounds? Ans. 7° 42'; 15° 33'; 23° 42'; 32° 25'.

Problem 2. If a motor which is being tested by the brake described in

Problem 1 is running at 500 r.p.m. and the pointer reads 170 pounds, what is

the brake horsepower? Ans. 4.05 h.p.

Problem 3. A brake of the style of Fig. 308 has the radius r, = 2 feet and
7-2 = 6 feet. If when a certain engine is being tested P = 410 pounds and

n = 180, what horsepower is being developed? Ans. 84.3 h.p.

Problem 4. If the engine referred to in Problem 3 has a cylinder 16 inches

in diameter, piston rod 3 inches in diameter (extending only one way from the

piston), 24-inch stroke and mean effective pressure of 21 pounds per square

inch, what is the mechanical efficiency of the engine? Ans, 93.2 per cent.

Fig. 309

143. Band Brakes. Fig. 309 shows a simple form of band

brake, such as is used on hoisting engines. The band is attached
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at C and passes around the wheel to the lever at B. The lever

is hinged at A and if force is applied downward at the end, the

band is tightened and the friction retards the 'motion of the

wheel inside the band. If the weight W is to be lowered at a

uniform rate of speed, the work done by gravity upon the weight

must equal the work done by the frictional force T2 — Ti on the

rim of the brake wheel, or

From Art. 64,

T2 = T^ef^,

f being the kinetic coefficient of friction and ^ the angle of contact.

By moments about point A,

PI = Tia.

From these three equations the force P required to lower the

weight W may be determined.

The band brake with modifications is used on automobiles. If

an automobile of weight W is moving with a speed of v, its kinetic

1 W
energy is ^ ~v^. In bringing the automobile to rest in a short

^ 9

distance by means of the brakes, this kinetic energy is used up
chiefly in the work of friction on the rubbing surfaces. If n is the

number of revolutions the wheel makes until it is brought to rest,

the relation between work and kinetic energy may be written

1 W
2

fir

T2 and Ti are the sums of the tensions on the tight and loose ends

respectively of the two brakes.

Problem 1. In Fig. 309, n = 18 inches, r2 = 24 inches, W = 1200 pounds,

a = 5 inches, i = 48 inches and / = 0.15. What force P is required in order

that the weight may descend uniformly? Ans. 162 lbs.

Problem 2. If P = 150 pounds on the band brake of Problem 1, with what
velocity will the weight W pass a point 50 feet below the starting point?

Ans. 15.54 ft. per sec.

Problem 3. If in Fig. 309 the rope sustaining W is wrapped the other way
on the drum so that W descends on the left side, what force P will be required

to allow it to descend uniformly? Ans. 329 lbs.

Problem 4. The weight of an automobile is 3000 pounds. The diameter

of its wheels is 36 inches and that of its brake rims is 16 inches. If equipped
with brakes similar to that of Fig. 309 for which a = 1 inch, I =^ 6 inches and
/ = 0.40, in what distance can it be brought to rest from a speed of 30 miles

per hour by a total pressure P = 40 pounds if the wheels do not skid?

Ans. 151 ft.
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GENERAL PROBLEMS.

Problem 1. Find the amount of work done in elevating the clay from a pit

30 feet in diameter and 50 feet deep if the clay weighs 100 pounds per cubic

foot and is lifted 6 feet above the top of the pit. Ans. 109,563,000 ft.-lbs.

Problem 2. What is the work done against gravity in filling a standpipe

80 feet high and 16 feet in diameter if the water is drawn from deep wells whose

average level is 120 feet below the base of the standpipe?

Ans. 160,848,000 ft.-lbs.

Problem 3. If the standpipe of Problem 2 is to be filled in 6 hours, no water

being drawn out meanwhile, what horsepower must the engine develop?

Ans. 13.56 h.p.

Problem 4. A fire engine takes water from the surface of a lake 20 feet

below its own level and delivers it from a nozzle 2 inches in diameter with a

velocity of 100 feet per second. What horsepower is required?

Ans. 43.5 h.p.

Problem 5. A tank 8 feet long, 6 feet wide and 4 feet deep is half full of

water. How many foot-pounds of work are required to raise all of the water

over the top of the tank? Ans. 18,000 ft.-lbs.

Problem 6. A block of granite 8 feet long, 3 feet wide and 3 feet high is

lying on its side. How many foot-pcunds of work are required to tip it up

on end? (Granite weighs 160 lbs. per cu. ft.) Ans. 31,960 ft.-lbs.

Problem 7. How much work is done in winding up a cable 500 feet long

which weighs 2 pounds per foot? Ans. 250,000 ft.-lbs.

Problem 8. A mine cage weighs 500 pounds, empty coal car weighs 200

pounds and the cable weighs 1 pound per foot. What work is done in raising

500 pounds of coal from the 200-foot level to the 50-foot level?

Ans. 198,750 ft.-lbs.

Problem 9. A 400-ton train is running at a speed of 60 mUes per hour on a

level track. If train resistance is 17 pounds per ton, what is the drawbar pull?

What horsepower is the engine developing? Ans. 6800 lbs. 1088 h.p.

Problem 10. A 1000-ton train attains a speed of 30 miles per hour in 1 mile

on a level track with a constant drawbar pull. If train resistance is considered

constant and equal to 8 pounds per ton, what is the drawbar pull? What is

the horsepower developed when the speed is 30 miles per hour?

Ans. 19,390 lbs. 1550 h.p.

Problem 11. If the locomotive of Problem 10 is pulling the same train up

a 0.25 per cent grade and is exerting the same drawbar pull, in what dis-

tance will it attain a speed of 30 miles per hour?

Ans. 9400 ft.

Problem 12. An ore car weighing 500 pounds

is pulled up a 30° incline by means of a counter-

weight as shown in Fig. 310. If the counter-

weight weighs 600 pounds and the car resistance

is 15 pounds, what velocity will the car have

after moving 100 feet from rest?

Ans. 18.6 ft. per sec. Fig. 310
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Problem 13. A coal incline is 500 feet long and 30 feet high. A car

weighing 60,000 pounds runs down the incUne and out on level track. If car

resistance is 6 pounds per ton, how far out on the level will it run?

Ans. 9500 ft.

Problem 14. If in a steam hammer of the same dimensions as given in

Problem 4, Art. 134, the steam is cut off and released at the top end of the

cylinder when the piston is at quarter stroke and at the same time is admitted

at boiler pressure below the piston, how far down will the hammer move?

Am. 1.83 ft.

Problem 15. In the hammer described in Problem 14, at what point must

cut-off and release above, and admission below be made in order that the ham-
mer just touches the anvU? Ans. 1.23 ft.

Problem 16. If in the hammer described in Problem 14 the cut-off is made
at quarter stroke but release above and admission below is made at half stroke,

with what velocity will the hammer strike the anvil? Ans. 9.81 ft. per sec.

Problem 17. A Pelton wheel is driven by a jet of water 1 inch in diameter

under a head of 280 feet. If the efficiency of the wheel is 80 per cent, what

horsepower will be generated? If the wheel is directly connected to a genera-

tor which has 90 per cent efficiency, how many kilowatts will be delivered?

Ans. 18.64 h.p. 12.52 kw.

Problem 18. The steam indicator card for the head end of the cyUnder

of a steam engine had an area of 3.27 square inches and for the crank end 3.21

square inches. Length of atmosphere line was 3.25 inches; scale of the spring,

40 pounds per inch; length of stroke, 24 inches; diameter of piston, 10 inches;

diameter of piston rod, 1.25 inches. If the engine is running at 120 r.p.m.,

what is the indicated horsepower? Ans. 45.2 h.p.

Problem 19. A hoisting engine is lifting one ton of ore per minute from a

steamer's hold 40 feet deep. If the efficiency of the hoisting apparatus is

75 per cent and that of the engine is 85 per cent, what is the indicated horse-

power? Ans. 3.8 h.p.

Problem 20. What horsepower is being developed if a 1000-ton train is

being hauled up a 0.5 per cent grade at a speed of 30 miles per hour, the train

resistance being 10 pounds per ton? Ans. 1600 h.p.

Problem 21. If the train described in Problem 20 has the steam shut off

and the brakes applied with their maximum effect (/ = 0.25), how far will the

train run? Ans. 116 ft.
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CHAPTER XII.

IMPULSE, MOMENTUM AND IMPACT.

144. Impulse and Momentum. The effect of a force may be

given in terms of the product of force and distance, which is called

work, or the product of force and time, which is called the impulse

of the force. If a force F is constant both in magnitude and direc-

tion during time t, the impulse is Ft. If F varies in magnitude,

the impulse for the infinitesimal time dt is F dt, and the impulse

for any time t is given by / Fdt. If the relation of F and t

Jo

known, the integration may be performed. Sometimes, even

though the relation between F and t is not known, the quantity

J Fdt can be eliminated between two simultaneous equations

containing it.

Impulse, like force, is a vector quantity, and has the same direc-

tion and position as the force factor.

The resultant impulse of a force which varies in direction is the

vector sum of the separate component impulses. Consider a

resultant force F applied to a body for t seconds, then suddenly

reversed and applied for a succeeding t seconds. It is evident

that the vectorial sum of the impulses is zero, since they are of

the same numerical value and of opposite sign.

If in the precedmg case the force should be changed only through

90°, the resultant impulse would be Ft V2 in amount, at an angle

of 45° with the direction of either component impulse. In any

case in which the force varies in direction, I Fdt must be vectorialion, / f

The momentum of a body is the product of its mass and velocity,

Mv. It is sometimes called the quantity of motion. Momentum,
like velocity, is a vector quantity having definite direction and

position. Like other vector quantities, both impulse and momen-
tum may be resolved into components or combined into resultants.

The unit of impulse is the impulse of a unit force acting for a

unit of time. In the English system this is the pound-second.

223
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The unit of momentum is the momentum of a unit mass moving

with unit velocity. In the English system the dimensions of this

W
unit are obtained as follows. Since Af = — , W being in pounds

, . feet ,, . . -i r pounds X seconds^ .,. i -xand g \n -j-j, M is m units of j

—

. Velocity

.^ , feet ,r • -^ . pounds X seconds^ ^

,

V is m units of r, so Mv is in units of j—

7

X
seconds feet

feet
T" = poundsX seconds. The dimensions of the unit of momen-

seconds

tum are, therefore, the same as those of the unit of impulse.

145. Relation Between Impulse and Momentum. Let F be

the resultant force acting upon a body of mass M to produce an

acceleration a. Then F = Ma. If F is constant, a is constant

and equals —-—
. The equation then becomes

z

Ft = Mv - Mvo.

If F varies in magnitude, F = M-rr, since a = -r- , and°
at at

Fdt = Mdv.

For time t, if Va is the velocity when t = and v the velocity after

time t,

£

pFdt = ("Mdv.

Fdt = Mv- Mvo.

The general statement of this relation may be made as follows:

During any period of time the impulse of the resultarU force acting

upon a body is equal to its change in momentum.
By means of the above relation, problems involving force, mass,

velocity and time may be solved directly instead of with the double

set of equations between force, mass and acceleration, and velocity,

acceleration and time.

EXAMPLE 1.

A body falls freely for 3 seconds. What is its velocity if it started from
rest?

Solution:— The force is the weight W, so the impulse is 3 W. The change
in momentum is the same as the final momentum, or Mv.
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Then
W

V = 96.6 ft. per sec.

EXAMPLE 2.

A 500-pound body initially at rest is acted upon for 10 seconds by a variable

working force F which is equal to 100 Vi, and also by a variable resisting

frictional force Fi which is approximately equal to 20 — i during that time.

What is its velocity at the end of 10 seconds?

Solution: — Impulse = change in momentum.

J-'»

1 /-lo /•!» 500

•'0 "'O O^.A

f"]:-~]>a:=s-
V = 126 ft. per sec.

Problem 1. A body is projected downward with a velocity of 80 feet per

second. What is its velocity 2 seconds later? Ans. 144.4 ft. per sec.

Problem 2. If a 100-pound weight on a level floor has a horizontal force of

15 pounds acting upon it for 10 seconds and a frictional force which is equal to

10 — t^ during that time, what will be its velocity if it starts from rest?

Ans. 21.3 ft. per sec.

146. Conservation of Linear Momentum. In any mutual

action between two bodies or two parts of the same body, tlie

mutual forces are always equal and opposite, by Newton's Third

Law of Motion. Since the time of contact is necessarily the same,

the impulses of the mutual forces are equal in value and opposite in

direction, hence neutralize each other. Then if there is no resultant

force acting which is external to the two bodies, the sum of the

momenta before the action is equal to the sum of the momenta

after the action, since for the whole system j F dt = 0. If Mi and

M2 are the masses of two bodies, Vi and V2 their velocities before

contact and v/ and V2 their velocities after contact, then

MiVi + MiVi = MiVi + M2V2.

Though there is no loss of momentum in any mutual action

between two bodies, there is always a loss in kinetic energy due

to the heat generated at the point of contact.

The direction of Vi should always be considered positive. If Vi

is in the opposite direction, it must be used as negative.
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EXAMPLE.

A 50-pound shot is fired from a gun which weighs 20,000 pounds. If its

muzzle velocity is 1200 feet per second, what is the initial I ackward velocity

of the gun? If the recoil is against a constant force of 3000 pounds, how soon

will the gun be brought to rest? What distance does it recoil? What is the

kinetic energy of each?

Solution: — The momentum of the shot and the gun before the shot is

fired is equal to zero, so the sum of the momenta after the shot is fared must
also equal zero. Therefore,

Momentum of shot forward — momentum of gun backward = 0.

50 ^,__. 20,000

32r2><^2°°=^2X"-
K = 3 ft. per sec.

The impulse of the resisting force is equal to the momentum of the gun, so

?0|00x3 = 3000^

t = 0.621 sec.

Since the resisting force is constant, the motion is one with uniform ac-

celeration and the distance is equal to the product of the average velocity and
the itime. The average velocity is J X 3 = 1.5, so

s = 1.5 X 0.621 = 0.932 ft.

The kinetic energy oi the shot is

iw2^ 1200= = 1,120,000 ft.-lbs.

The kinetic energy of the gun is

1 20,000

2 32.2
X 3= = 2790 ft.-lbs.

It will be noticed that though the momentum of the shot is numerically equal

to that of the gun, its kinetic energy is 400 times as great.

Problem 1. A man weighing 150 pounds jumps with a velocity of 10 feet

per second into a boat which weighs 120 pounds and which is at rest. What
will be the initial velocity of the boat? What will be the loss in kinetic energy?

Ans. 5.55 ft. per sec. 104 ft.-lbs.

Problem 2. A gun weighing 160,000 pounds fires a projectile weighing

1000 pounds with a velocity of 1500 feet per second. With what initial

velocity wUl the gun recoil? How far will it recoil if resisted by a nest of

springs which would be compressed 1 inch by a force of 200,000 pounds?

What is the kinetic energy of the projectile and of the gun respectively?

Ans. 9.37 ft. per sec. 5i inches. 35,000,000 ft.-lbs. 218,000 ft.-lbs.

147. Angular Impulse and Angular Momentum. In Fig. 311,

let F be one of a system of forces acting upon the body shown, and
let d be the perpendicular distance from to the line of action

of F. The impulse of the force F during time dt is F dt and this
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impulse is a vector quantity having direction and line of action as

shown. The moment of this impulse about the axis is dXFdt

and the summation of these moments of impulse, j d X F dt,

is called the moment of impulse or angular impulse of the force

upon the body.

Fig. 311 Fig. 312

In Fig. 312, let dM be the mass of any particle at distance p

from the axis of revolution 0. If the angular velocity of the body

is CO, the tangential velocity of the mass dM is po) and its momen-
tum is dMpta. This momentum is a vector quantity whose posi-

tion is through dM in the direction of the velocity of dM, normal

to p. The moment of the elementary momentum about the axis

is dMp^u and is called the moment of momentum of the particle.

The summation of all these elementary moments of momentum is

called the moment of momentum or angular momentum of the body.

jdMp^co = (0 rp2 dM = Io(o.

From Art. 105,

n 7 T T dbl
Fd = la = I ^rr-

at

ldy.Fdt= fidca.

Td X Fdt = Tm dt = Ici) - Icoo.

The statement of this relation is as follows

:

In any motion of rotation, the sum of the angular impulses of the

forces acting is equal to the increase in angular momentum.

Both angular impulse and angular momentum are vector quan-

tities and are represented graphically by vectors parallel to their

axes of rotation. The convention for sign is the same as that

used in connection with couples, as explained in Art. 28. If

viewed so that the rotation of the angular impulse or momentum
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appears negative (clockwise), the vector points away from the

observer. The vectors for Figs. 311 and 312 would be perpen-

dicular to the plane of the figures, and the arrow would point

toward the observer, since the rotation is counterclockwise. Like

other vector quantities, angular impulse and angular momentum
may be resolved into components or combined into resultants as

desired.

EXAMPLE.

A flywheel weighs 3200 pounds and is rotating at 125 r.p.m. Its radius of

gyration is 3.3 feet and its shaft is 6 inches in diameter. If the coefficient of

friction / at the bearing is 0.02, how many revolutions will it make before

coming to rest?

Solution:— Friction = 3200 X 0.02 = 64 lbs.

The impulse of the friction = 64 (.

The angular impulse = 64 i X i = 16 i.

Angular impulse = change in angular momentum.

16 ( = loi.

16 « = 14,180.

t = 885 sec. = 14.75 min.

The average speed of the flywheel is 62.5 r.p.m., so in 14.75 minutes it will

turn through 62.5 X 14.75 = 922 revolutions.

Problem 1. When another lubricant was used, the wheel referred to in the

Example above came to rest in 22 minutes, 13 seconds. What was the coeffi-

cient of friction? Ans. 0.0133.

Problem 2. A cast iron cylinder 1 foot in diameter and 4 inches long is

supported in bearings by means of a shaft 2 inches in diameter. The coefficient

of friction is 0.01. A force of 5.44 pounds vertically downward is appUed to

a cord wrapped around the cylinder. What is the rim velocity after 10

seconds if it starts from rest? Ans. 28.6 ft. per sec.

Problem 3. If in Problem 2 the force is released at the end of 10 seconds,

how long will the cylinder rotate until the friction of the bearing brings it to

rest? Ans. 4 min. 26 sec.

148. Conservation of Angular Momentum. If during any
time t there is no external angular impulse on a body or system
of bodies with respect to any given axis, the angular momentum
with respect to that axis remains constant, irrespective of mutual
actions and reactions between the bodies or parts of bodies. Since

the internal forces always occur in pairs of equal and opposite forces

during the same time t, the impulse of each pair, j F dt ~ j F dt,
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reduces to zero. Since the angular impulse is zero, there can be

no change in angular momentum.
Consider as an example two disks, A and B, Fig. 313, supported

on a horizontal shaft. Let disk A be fastened to the shaft and be

at rest, while disk B rotates upon the shaft with angular velocity co.

Let the moment of inertia of disk B be /, and the moment of in-

ertia of the entire system be I'. Since

disk A is at rest, the angular mo-

mentum of the system is equal to the

angular momentum of B, or lu. If

now by some means the two disks are

fastened together, as by allowing a bolt

in B to drop into a hole in A, the two

will rotate together with a new angular velocity w'. The angular

momentum of the system is now I'u', and since it has not been

changed by the internal action and reaction of the bolt and the

disks,

/O)
rt

A B
h

Fig. 313

= Id), so r

Iw

Ao A'

Both Io3 and 7'co' are represented by the same vector as shown

at the left of the figure.

As in the case of linear momentum, there is a loss of kinetic

energy due to the mutual action between the two disks.

As another case, consider the two bodies A and B, Fig. 314,

,/ / which may be moved along a horizontal axis

,
and which are rotating with their support

,-\ ry about a vertical axis with angular velocity. oj.

If 7 is their moment of inertia with respect to

their axis of rotation, their angular momen-
FiG. 314 ^ujn is /^j If now by some internal action

the bodies are displaced, as to A' and B', the moment of inertia

of the system becomes I'. Then, as above, w' = yi^- Since /' is

less than I, oi' must be correspondingly greater than oj.

Problem 1. In Fig. 313, the disks are steel, 18 inches in diameter. B is

2 inches thick and A is i inch thick. If B is rotating originally at a speed of

60 r.p.m., what will be the speed of rotation after being connected? What is

the loss in kinetic energy by the blow as they are connected?

Ans. 53.4 r.p.m. 2.77 ft.-lbs.
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149. Resultant of Angular Momenta. Gyroscope. A gyro-

scope is a body which is rotating about an axis, called the spin

axis, and is partially free to move in other directions. If the

armature of a motor, Fig. 315, is suspended from a support and is

rotating at a high rate of speed, it offers the same resistance to

any translatory force or to any torque about the spin axis that it

would if not rotating. If, however, a torque is applied* to rotate

it about any other axis, as the vertical, it will not rotate about the

vertical axis, but will rotate or precess about a horizontal axis

perpendicular to the other two axes. In Fig. 315, OX is the spin

axis, OY is the tmque axis and OZ, mutually perpendicular to

these, is the precession axis.

Fig. 315 Fig. 316

The explanation of this precession is as follows. If / is the

moment of inertia of the rotating part with respect to the axis

of rotation and a is its angular velocity, its angular momentum is

/co, represented by vector ON, Fig. 316. The vector points to

the left if the rotation is clockwise when viewed from the right

end. If a torque M is applied to the frame which tends to rotate

the motor about the axis OF in a clockwise direction viewed from

above, this torque will have an angular impulse Mdt in dt time,

and will produce an equal change in the angular momentum about

axis OY. This is represented by vector OL. The resultant

angular momentum of the body is represented in amount and
direction by the resultant OP of the two angular momentum
vectors, ON and OL, at an angle d<j) with the vector ON. This is

the new axis of spin and in order that it shall become so the body
must rotate about axis OZ, the direction being counterclockwise

viewed from the front. This motion is called precession, and u'

is the angular velocity of precession.

^^ = tan d<p = dip.
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with an acceleration a = — = 4 feet per sec. per sec, the horizontal pressure
r

of the bearing,

H = 3^ X 4 = 74.5 lbs.

This is due to the centrifugal force and would be the same if the motor were

not rotating. Since there is no torque about the axis of precession, there are

no horizontal components of the reactions at the ends of the armature normal

toff.

Since the spin is backward, the angular momentum vector lai points to

the right. In order to combine with this momentum vector so as to produce

precession to the right, the angular impulse vector must point backward along

the track toward the observer. The torque to give the vector this direction

is counterclockwise, so P-i must be larger than Pi.

Since M = loiu', by moments about 0,

Po X 2 - 600 X 1 = /ww'.

^ ~ g" 32.2 ^ 4 *•*"'•

The angular velocity of rotation of the car wheels is

"1 = - = , nnr = 14.55 rad. per sec.
r 1.6 10

Since the gear ratio is 4 to 1, the angular velocity m of the armature is

4 X 14.55 = 58.2 rad. per sec.

M = - = zryr^ = 0.2 rad. per sec.
r 100

2 Pz - 600 = 4.66 X 58.2 X 0.2.

2 Pa - 600 = 54.

P2 = 327 lbs.

Since Pi + P2 = 600, Pi = 273 lbs.

It is seen that the pressure on the bearing on the inside of the curve is 27

lbs. heavier than if the motor were not rotating and the pressure on the out-

side is 27 lbs. lighter.

For a curve in the opposite direction the angular momentum vector would

still point to the right, and the angular impulse vector would have to point

forward in order that the two would combine to produce precession to the

left. The torque is therefore of opposite sign, so the heavier pressure is again

on the inside bearing.

For a motor geared so that it rotates in the same direction as the car wheels,

the heavier pressure is on the bearing on the outside of the curve.

Upon the wheels themselves there is a like gyroscopic action, so that the

pressure on the outer rail is greater and that on the inner rail is less than it

would be with no rotation.

Problem 1. In Problem 1, Art. 79, it was found that a pair of 33-inch cast

iron car wheels weighing 700 pounds had a moment of inertia of 6.99 with

respect to the axis of rotation. If a car is running at a speed of 30 miles per
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hour around a, 10° curve, what is the extra pressure on the outer rail due to

gyroscopic action? Use 4.9 feet as the distance from center to center of rail.

Ans. 3.54 lbs. for each pair of wheels.

Problem 2. Describe the gyroscopic action of the flywheel of an automobile

engine when rounding a curve (1) to the right; (2) to the left.

Ans. (1) Heavier pressure on rear bearing.

Problem 3. If an ordinary top is rotating clockwise viewed from above

and the upper end of the axis is pushed horizontally north, which way will it

really lean? Explain. Ans. East.

Problem 4. If an aeroplane which is coming down head on at a steep angle

changes direction by a short curve into the horizontal, what wiU be the gyro-

scopic action if the propeller is rotating clockwise when viewed from the rear?

Ans. Left end will be thrown forward.

150. Reaction of a Jet of Water. If a jet of water of cross-

sectional area A issues from the side of a vessel of water under

head h, as shown in Fig. 318, it will have

a velocity v = y/2gh. The water before

leaving the vessel is at rest, so the change

in momentum in the direction of the jet is

Mv per second, M being the mass of water

W
flowing per second. Mv = — v,W being the Fio- 318

weight of water flowing per second. If w is the weight of the

unit volume of water, W = wAv. Then the change in momentum
01) A 4)2

per second is Mv = . The change in momentum in time t

II) A t)

is t and this must be caused by an impulse Ft. Then since

g

F = ^^^^ = 2 wAh.
g

F' is the equal and opposite reaction of the water upon the

vessel. If the vessel is not held by some external force, it will

move to the right under the action of force F'.

Problem 1. A cubical vessel 1 foot on each side, weighing 7.5 pounds is full

of water and is suspended from a cord so that its center of gravity is 5 feet

from the support. If a jet 1 square inch in area under a head of 1 foot is

issuing from the side, how far from the vertical is the center of gravity dis-

placed? Ans. 0.745 in.

151. Pressure Due to a Jet of Water on a Vane. If a jet of

water is discharged perpendicularly against a stationary flat vane,
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as in Fig. 319, all of the velocity of the jet in the original direction

is destroyed. If W is the weight of water flowing per second, the

W
change in momentum in the direction of the jet is — ?; per second.

W
The change in momentum in time tis — vt and this must equal

the impulse of the force F which supports the vane. Then

„, Wv ^ wAv^ ,

Ft =— t = t.

F = Wv
9

wAv^ = 2wAh.
g g

It will be noticed that the pressure P due to an impinging jet

is twice as great as the static pressure P' = wAh on the same

area as the area of the jet, due to a head of water corresponding

to the same velocity.

D

FiQ. 320

If a jet of water strikes a curved vane tangentially, as shown in

Fig. 320, and is turned through an angle 6, it will leave in a direc-

tion tangent to the vane at B with the same speed as that with

which it enters at A neglecting friction. The vector OC may be

drawn to represent to scale the velocity at A and OD to represent

the velocity at B. Then CD is the vector change in the velocity

of the jet. If W is the weight of water flowing per second, the

vector change in momentum in time t is

— CD t = — 2v sm-t,
g 9 2

'

in the direction CD. This must equal Ft, since

Impulse = change in momentum.

The resultant pressure on the vane necessary to hold it against

the jet is, therefore,

F = — 2 vsm--
g 2
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Problem 1. What pressure will be exerted upon a flat vane held normal to

a jet of water 2 inches in diameter under a head of 60 feet? Ans. 164 lbs.

Problem 2. A fire stream from a nozzle 1.5 inches in diameter has a velocity

of 120 feet per second. What pressure does it exert upon a wall at close

range? Ans. 343 lbs.

Problem 3. What is the pressure in amount and direction exerted by a jet

of water 2 inches in diameter imder a head of 120 feet upon a curved vane for

which e = 90°? Ans. 463 lbs., 45° with initial v.

Problem 4. Solve Problem 3 if 9 = 180°. Ans. 655 lbs. parallel to jet.

152. Sudden Impulse or Impact. The impulse of a force

which acts for a very short time is called a sudden impulse or

impact, as for example the blow of a hammer upon a nail, the col-

lision of a projectile and its target, the impact of a bat upon a

ball. If the mass centers of the two bodies before collision move
along the same straight line and the form of the bodies is such

that the pressure each exerts upon the other is also along this

line,'the impact is called direct central impact. All

other impacts are oblique.

For simplicity assume the colliding bodies to be

spheres, as in Fig. 321. The mass Mi moving with

velocity Vi overtakes mass Ma moving with velocity

V2. When the bodies first touch, as in Fig. 321(a),

the pressure between them is zero. For a short

period of time, the centers approach each other and

each is deformed by the pressure of the other.

When the pressure becomes a maximum the def-

ormation is a maximum, as shown in Fig. 321(b),

and the bodies are moving with the same velocity v.
"

^
If the bodies are inelastic, the pressure drops di-

rectly to zero, the deformation remains and the two bodies go on

together with velocity v. By the principle of conservation of linear

momentum. Art. 146,

MiVi -t- M2V2 = MiV + M2V.

If the bodies are partially elastic, the pressure decreases gradu-

ally to zero, the original form is partially regained and the two

bodies separate. Mi moving with velocity Vi and Af2 with velocity

V2', as shown in Fig. 321(c). In this case also, by Art. 146,

M,v -I- M2V = MiVi' -f- M2V2'.

The first period of time is called the period of compression. The
second period is called the period of restitution.

\^
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From the two equations above the sum of the momenta before

impact equals the sum of the momenta after impact.

MiVi + M2V2 = MiVi' + M2V2'.

The direction of vi should always be considered positive. If V2

is in the opposite direction, it must be used as negative. The
signs of Vi and Vi show their directions.

The relative velocity of the two bodies before impact is Wi — Vi

and the relative velocity after impact is V2' — vi'. Due to the

fact that physical bodies are not perfectly elastic, the relative

velocity after impact is always less than that before impact, and

the ratio of the two is called the coefficient of restitution, represented

bye.
V2' - Vi'

e = •

Vi — Vi

This may be written

e (vi - V2) = V2' - Vi'.

The value of e is zero for entirely inelastic bodies and would be

unity for perfectly elastic bodies. The following table gives the

values of e for several materials as determined by experiment.

Material
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Solution:— MiVi + M2V2 = MiV + MiV.

g g \9 g]
V = 5.43 ft. per sec.

Initial K.E. =
I ^^^ ^00 +

^
^X36 = 8.88 ft.-lbs.

Final K.E. = -^ 5^ X 5.43^ = 3.21 ft.-lbs.

Loss in K.E. = 8.88- 3.21 = 5.67 ft.-lbs.

EXAMPLE 2.

A 10-pound steel ball at rest is struck horizontally by a hammer weighing

4 pounds with a velocity of 12 feet per second. What is the velocity of each

after the impact and the loss in kinetic energy?

Solution: — The hammer is Mi and the ball M2. From the table above,

e = 0.55.

0.55 (12- 0) = %' - vt' = 6.6.

48-1-0 = 42)i'-t-10%'.

vi = — 1.29 ft. per sec.

vi' = 5.31 ft. per sec.

The ball is driven in the direction the hammer was going originally; the

hammer itself rebounds.

Initial K.E. =
| 3^ 144 = 8.95 ft.-lbs.

Final K.E. of hammer = ^^ 1.29= = 0.10 ft.-lb.

Final K.E. of baU = i^ 5.3P = 4.39 ft.-lbs.

Loss in K.E. = 8.95 - 4.49 = 4.46 ft.-lbs.

Problem 1. An inelastic body weighing 10 pounds is moving with a

velocity of 20 feet per second and overtakes another of 15 pounds weight

moving in the same direction with a velocity of 15 feet per second. What is

the final velocity and the loss in kinetic energy?

Ares. 17 ft. per sec. 2.4 ft.-lbs.

Problsn: 2. An inelastic ball of 30 pounds weight moving with a velocity

of 100 feet per second strikes another of 30 pounds weight which is at rest.

What is the final velocity and the loss in kinetic energy?

Am. 50 ft. per sec. 2330 ft.-lbs.

Problem 3. A glass marble weighing 2 ounces drops 2 inches upon a heavy

glass slab. To what height will it rebound? What is the loss in kinetic

energy due to the impact? Ans. 1.8 in. 0.002 ft.-lb.

Problem 4. A cast iron ball weighing 1 pound is moving with a speed of

10 feet per second and strikes another weighing 7.5 lbs. moving in the oppo-

site direction with a speed of 3 feet per second. What are the final velocities?

Ans. V\ = — 7.21 ft. per sec. v^ = —0.71 ft. per sec.

Problem 6. With what velocity must a 5-pound steel hammer strike a 1-

pound steel ball at rest, in order to drive it with a velocity of 100 feet per

second? Ans. 77.5 ft. per sec.
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GENERAL PROBLEMS.

Problem 1. A freight car weighing 40,000 pounds starts from rest and runs

down a 2 per cent grade. If train resistance is 6 pounds per ton, what is its

velocity at the end of one minute? Ans. 32.8 ft. per sec.

Problem 2. If the train resistance on the car described in Problem 1 is

6 + 0.1 t pounds per ton, t being in seconds, what is its velocity at the end of

one minute? Ans. 30 ft. per sec.

Problem 3. If at the end of one minute brakes are applied so as to stop the

car described in Problem 1 in 10 seconds, what is the braking force required?

Ans. 4760 lbs.

Problem 4. A gun weighing 5 pounds shoots a bullet weighing 0.1 ounce

with a muzzle velocity of 800 feet per second. What is the recoil velocity of

the gun? Ans. 1 ft. per sec.

Problem 5. A push car weighing 300 pounds is moving with a uniform

velocity of 15 feet per second. If a man weighing 150 pounds boards it from

the side with no velocity in the direction it is moving, what is their velocity

after the man comes to rest with respect to the car?

Ans. u = 10 ft. per sec.

Problem 6. A mine cage weighs 800 pounds and the drum of the hoisting

engine connected to it weighs 1000 pounds. If A; is 1.5 feet, the diameter of

the drum is 4 feet, the diameter of the shaft is 2 inches and the coefficient of

friction at the bearings is 0,03, what velocity will the cage attain if allowed to

fall for 5 seconds before the brake is apphed? Ans. 94.3 ft. per sec.

Problem 7. Two cast iron spheres 4 inches in diameter connected by a

slender rod with their centers 3 feet apart are rotating in a horizontal plane

about an axis normal to the rod at its middle at a speed of 60 r.p.m. If by
means of a spring joining them the two spheres are brought into contact at the

middle, what will be their new speed of rotation? Ans. 3480 r.p.m.

Problem 8. If a spherical top 2 inches in diameter weighs 1 pound and is

spinning at a speed of 800 r.p.m., what will be its time of precession if its point

is 1.2 inches from the center of gravity and its axis is 15° from the vertical?

Ans. 1.75 sec.

Problem 9. A gjToscope is composed of a circular rim weighing 10 pounds
on a bicycle wheel 24 inches in diameter. The wheel is on the end of a hori-

zontal axis 3 feet long, supported at its middle on a pivot so that it is free to

rotate in any direction. If the wheel is rotating about its own axis with a

speed of 600 r.p.m. clockwise when viewed from the pivot, in which direction

will it precess and with what angular velocity?

Ans. Counterclockwise, viewed from above, w' = 0.769 rad. per sec.

Problem 10. Discuss the gyroscopic action of the propeller of a ship as the

ship pitches fore and aft on the waves.

Problem 11. If the coefficient ot restitution e = 0.9 for a rubber ball, how
high will it rebound if dropped from a height of 10 feet? Ans. 8.1 ft.

Problem 12. A cast iron sphere 2 inches in diameter when dropped from

a height of 12 inches upon a cast iron block rebounded 4 inches. Compute e

and the loss in kinetic energy. Ans. e = 0.577. 0.727 ft.-lb.
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Problem 13. A 100,000-pound railroad car moving with a speed of 5 miles

per hour overtakes and collides with another weighing 90,000 pounds moving
with a speed of 2 miles per hour. What is the loss in kinetic energy if e = 0.20?

Ans. 13,080 ft.-lbs.

Problem 14. From a point 5 feet above the ground a ball is thrown upward

at an angle of 60° with the horizontal against a wall 20 feet distant. If its

initial velocity is 60 feet per second and e for the ball is 0.50, where and with

what velocity will the ball strike the ground?

Ans. 39.8 ft. from wall, v = 86.7 ft. per sec, 10° with vertical.

Problem 15. If the ball described in Problem 14 is thrown horizontally

with the same velocity, but at an angle of 60° with the wall, where wiU it strike

the wall? Where will it strike the ground and with what velocity?

Ans. 10 ft. along the wall, 2.61 ft. from ground. 15.13 ft. along the wall,

4.45 ft. from the wall, v = 43.5 ft. per sec. Angle with ground = 24° 20'.

Angle with wall = 41°.
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variable, 132, 133.

Accelerations, composition of, 128.

Algebraic method of analysis, 2.

Amplitude, 145, 160.

Angle, of friction, 83.

of repose, 83.

Angular, acceleration, 155, 159, 160.

displacement, 154.

impulse, 226.

momentum, 226.

velocity, 154.

Area, centroid of, 66, 69.

moment of inertia of, 99.

Auxiliary circle, 156.

Axes of symmetry, 67.

Axis, inertia, 99.

instantaneous, 182.

Axle friction, 86.

Balancing, 173, 174, 175.

of locomotives, 195.

reciprocating parts, 193.

both rotating and reciprocating

parts, 195.

Band brakes, 219.

Belt friction, 94.

Brake friction, 90.

Braking of trains, 213.

Brakes, band, 219

Built-up sections, moment of inertia

of, 116.

Catenary, 56.

Center, of oscillation, 169.

of percussion, 171.

Center of gravity, 65.

of composite body, 75.

by experiment, 77.

Centrifugal, force, 143.

tension in flywheels, 171.

Centroid, of a force system, 65, 6b.

of irregular plane area, 77.

of a line, 66.

of a solid, 66.

of a surface, 66.

Centroids, 65.

by integration, 70.

of surfaces and solids of revolu-

tion, 73.

Circle, friction, 86.

Circular pendulum, 145.

Coefficient, of kinetic friction, 83,

85.

of restitution, 236.

of rolling resistance, 90.

of static friction, 83, 85.

Combined translation and rotation,

179.

Composition, of accelerations, 128.

of couples, 31.

of forces, 39, 40, 49.

of velocities, 128.

Compound pendulum, 169.

Compression, period of, 235.

Concurrent system of forces, 5.

Cone of friction, 87.

Conical pendulum governor, 172.

Connecting rod of engine, 187.

Conservation, of angular momentum,
228.

of linear momentum, 225.

241



242 INDEX

Cord loaded uniformly horizontally,

53.

Couple, arm of, 29.

graphic representation of, 30.

moment of, 29.

Couples, composition of, 31.

Curvilinear motion, 140.

D'Alembert's principle, 125.

Direct central impact, 235.

Dynamometer, absorption, 217.

Effective forces, 125.

on a rotating body, 143, 160.

moment of tangential, 161.

resultant of normal, 164.

Efficiency, mechanical, 215, 219.

Energy, 202.

kinetic, 203.

Equations of motion, 183.

Equilibrium, of colinear forces, 6.

of concurrent forces in space, 13,

16.

of coplanar forces, 8, 11.

of parallel forces, 32, 34.

of parallel forces in space, 35.

problems in, 44.

Falling bodies, 122.

FlyTvheels, centrifugal tension in, 171.

Force, centrifugal, 143.

concentrated, 3.

definition of, 1.

diagram, 4.

distributed, 3.

effect of, 124.

moment of, 17, 18.

polygon, 8, 24.

projection of, 7.

resolution into another force and a

couple, 32.

unit of, 1.

Forces, composition of, 39, 49.

concurrent system of, 5.

effective, 125.

effective, on a rotating body, 160.

equilibrium of, 40, 41.

graphical representation of, 4.

Forces, moment of tangential effec-

tive, 161.

parallel, 23.

parallel in equilibrium, 32, 34, 35.

reduction of a system to a force and

a couple, 41.

resolution and recomposition of,

11.

resultant of normal effective, 164.

transmissibility of, 4.

Free-body diagram, 3.

Friction, 82.

angle of, 83.

axle, 86.

belt, 94.

brake, 90.

circle, 86.

coefficient of, 83, 85.

cone of, 87.

kinetic, 82.

laws of, 85.

limiting, 82.

pivot, 92.

rolling, 90.

static, 82.

summary of principles of, 96.

Funicular polygon, 24.

Governor, weighted conical pendu-

lum, 172.

Graphic method of analysis, 2.

Graphical representation, of accelera-

tion, 121.

of angular impulse, 227.

of angular momentum, 227.

of a couple, 30.

of a force, 4.

of impulse, 223.

of momentum, 223.

of velocity, 119.

of work, 201.

Gravity, center of, 65.

Gyration, radius of, 100

Gyroscope, 230.

Harmonic motion, simple, 129, 156.

Horsepower, 215.
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Impact, 235.

direct central, 235.

oblique, 235.

Impulse, 223, 224.

angular, 226.

Indicator, steam engine, 216.

Inertia, axis, 99.

moment of, 99.

product of, 107.

Instantaneous axis, 182.

Jet of water, 233.

Kinematic discussion, 1.

Kinetic energy, of rotation, 208.

of rotation and translation, 210.

of translation, 203.

Kinetic friction, 82.

Kinetic reaction on unbalanced wheel,

192.

Kinetic reactions, on connecting rod,

189.

on side rod, 191

.

Kinetics, 1, 119.

Moment, unit of, 17.

Moment of inertia, of an area, 99.

of an area, polar, 100.

of an area, polar, with respect to

parallel axes, 104.

of built-up sections, 116.

of composite area, 105.

by experiment, 115.

of mass. 111.

maximum and minimum, 110.

with respect to inchned axes, 106.

with respect to parallel axes, 102.

with respect to three rectangular

axes, 104.

sign of, 102.

Moments, principle of, 17.

Momentum, 223, 224.

angular, 226.

Motion, curvilinear, 140.

equations of, 183.

Newton's laws of, 3.

rectilinear, 119.

relative, 134.

simple harmonic, 129, 156.

Laws, of friction, 85.

of motion, Newton's, 3.

Line, centroid of, 66.

moment of, with respect to a plane,

66.

Mass, definition, 1.

unit, 2.

Mechanical efficiency, 215, 219.

Mechanics, 1.

divisions of, 1.

fundamental quantities in, 1.

Methods of analysis of problems, 2.

Moment, of a coup)e, 29.

of a force with respect to a Une, 18.

of a force with respect to a plane,

28.

of a force with respect to a point,

17.

of a solid, surface or line with re-

spect to a plane, 66.

of tangential effective forces, 161.

sign of, 17.

Newton's laws of motion, 3.

Normal, acceleration, 141.

effective forces, 164.

Oblique impact, 235.

OscUlation, center of, 169.

Pappus and Guldinus, theorems of,

74.

Parallel forces, 23.

in equilibrium, 32, 34, 35.

Parallelogram law, 5.

Pendulum, conical, 172.

compound, 169.

simple circular, 145.

Percussion, center of, 171.

Period, of compression, 235.

of restitution, 235.

Pivot friction, 92.

Planes of symmetry, 67.

Polar moment of inertia of an area,

100.

Polygon of forces, 8, 24.
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Potential energy, 203.

Power, 215.

Pressure of water on a vane, 233.

Principle of moments, 17, 25, 40.

Principles of friction, summary of, 96.

Problems in equilibrium, 44, 50.

Product of inertia, 107.

Projectile, 149.

Projection, of a force, 7.

of a force polygon, 13.

of a force system, 16.

Radius of gyration, of an area, 100.

of mass, 111.

Reactions of supports of rotating

bodies, 166.

Rectilinear motion, 119.

Reference planes, 13.

Relative motion, 134.

Resistance, rolling, 89.

Resolution, of accelerations, 128,

181.

of a force into a force and a couple,

32.

of a force into three components,

14.

of a force into two components, 7.

of velocities, 128, 180.

Restitution, period of, 235.

coefficient of, 236.

Resultant, of angular momenta, 230.

of normal effective forces, 164.

of three or more forces, 8, 10, 13, 15.

of three or more parallel forces, 26,

27.

of two concurrent forces, 5, 6.

of two parallel forces, 23, 24.

Rolling resistance, 89.

coefficient of, 90.

Rotation, 154. •

kinetic energy of, 208.

and translation combined, 179.

Simple circular pendulum, 145.

Simple harmonic motion, 129, 156.

Solid, centroid of, 66, 69.

moment of, with respect to a plane,

66.

Space, diagram, 4.

units of; 1.

Speed, 119.

Static friction, 82.

Statics, 1.

Steam engine indicator, 216.

Surface, centroid of, 66, 69.

moment of, with respect to a plane,

66.

Symmetry, axes of, 67.

planes of, 67.

Tangential acceleration, 141.

Three-force members, 42.

Time, unit of, 1.

Translation and rotation combined,

179.

Triangle law, 5, 8.

Two-force members, 42.

Uniform, circular motion, 142.

velocity, 119.

Variable, acceleration, 120.

velocity, 119.

Varignon's theorem, 18.

Vectors, 2.

Velocities, composition of, 128.

Velocity, 119.

angular, 154.

uniform, 119.

variable, 119.

in a vertical curve, 147.

Water, jets, 233.

power, 216.

Weighted conical pendulum governor,

172.

Work, 199.

graphical representation of, 201.

lost in friction, 211.










